

Report of Preliminary Geotechnical Exploration

Hancock County Flood Risk Reduction Program – Additional Hydraulic Improvements

September 23, 2020

Prepared for:

Maumee Watershed Conservancy District Defiance, Ohio

Prepared by:

Stantec Consulting Services Inc. Toledo, Ohio

Stantec Consulting Services Inc. 4540 Heatherdowns Boulevard Suite A, Toledo OH 43614-3100

September 23, 2020 File: 174316204

Attention: Steve Wilson, PE, PS Maumee Watershed Conservancy District 1464 Pinehurst Drive Defiance, Ohio 43512

Reference: Report of Preliminary Geotechnical Exploration Hancock County Flood Risk Reduction Program Additional Hydraulic Improvements Findlay, Hancock County, Ohio

Dear Mr. Wilson,

Stantec Consulting Services Inc. (Stantec) has completed a preliminary geotechnical report for the proposed additional hydraulic improvements of the Blanchard River near downtown Findlay, Ohio in Hancock County. The enclosed report contains a brief description of the site, geologic conditions, the scope of work, and geotechnical recommendations for the project.

We appreciate the opportunity to assist you with this project. If you have any questions or need additional information, please contact our office.

Regards,

Stantec Consulting Services Inc.

Doul of Derdin

Derek Gerdeman PE Senior Project Engineer Phone: 419-380-8910 ext 115 derek.gerdeman@stantec.com

 Attachment:
 Preliminary Report of Geotechnical Exploration

 c.
 Derek Dalton, David Hayson - Stantec

 /djg

Stan A.Harris

Stan Harris PE Senior Principal Phone: 513-842-8211 stan.harris@stantec.com

Table of Contents

EXECL		IMARY I	
1.0	INTRODU		1
 2.0 2.1 2.2 2.3 2.4 2.5 2.6 	GENERAL SOIL GEO BEDROCK SEISMIC . HYDROLC	Y AND OBSERVATIONS	1 1 2 2
3.0	EXPLORA	TION	3
4.04.14.25.0	LABORAT 4.1.1 4.1.2 4.1.3 SUBSURF	ORY TESTING Overview	5 5 5 5 5 6
5.1 5.2 5.3 5.4 5.5	GENERAL SLOPE ST SETTLEM CULVERT	ABILITY	8 8 8 8
	F TABLES		
Table 2 Table 3	 Summar Results of 	ummary y of Laboratory Testing of Soil Classification Testing	5
	F FIGURE 1. Boring	S Layout	1
LIST O	F APPEND	DICES	

- APPENDIX A BORING LAYOUT AND LOGS
- APPENDIX B LABORATORY TEST RESULTS

 \bigcirc

Introduction

Executive Summary

As part of the Hancock County Flood Risk Reduction Program, the Maumee Watershed Conservancy District (MWCD) is planning to widen an additional area of the floodplain bench of the Blanchard River in Hancock County, Ohio, near downtown Findlay, Ohio. The proposed floodplain bench widening covers an approximate area of 19 acres along the north bank of the river and extends from the Norfolk Southern Railroad bridge on the west side of the site to near Dr. Martin Luther King Jr. Way on the east side of the site. Stantec Consulting Services Inc. (Stantec) was contracted by MWCD to perform engineering and design services for the program, including the geotechnical exploration for the additional hydraulic improvements.

Four borings were advanced by Stantec to provide geotechnical data along the alignment of the proposed floodplain bench widening. Below a thin layer of topsoil, soils identified as lean clay and sandy lean clay (CL), silty clayey sand (SC-SM), clayey sand (SC), silty sand (SM), silt (ML) and silty clay with sand (CL-ML) were observed to depths ranging from 15.2 feet to 19.9, where auger refusal was encountered. Groundwater was encountered in B-3 at a depth of 17.2 feet while the remaining borings were dry upon completion.

Slope stability analyses were not performed as part of this preliminary geotechnical exploration. Based on the soils encountered and the results of stability analyses performed on the adjacent project, 3:1 (H:V) cut slopes are recommended. Prior to final design, it is recommended that slope stability analyses be performed for any slopes exceeding 10 feet in height to confirm adequate factors of safety against slope failure. Additional borings and laboratory testing will be required to support slope stability analyses.

Based on the conceptual drawings provided for the current preferred alignment, it appears that no embankments will be constructed as part of this project. If the final design includes constructing embankments for the bike path or other structures, it is recommended that settlement analyses be performed to confirm that estimated settlement values are within recommended tolerances. Additional borings and laboratory testing will be required to support settlement analyses.

The conceptual drawings provided for the current preferred alignment indicate that culverts are being considered under Cory Street and Main Street. Based on the depths to bedrock found during this exploration, culverts may be either be soil bearing or rock bearing depending on the size and invert elevation determined in detailed design. Prior to final design, it is recommended that additional borings be drilled near the exact locations of culverts in accordance with Section 303.7.2 of "*Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations*". For culverts with a planned diameter or span of 10 feet or greater, additional borings should include 5 feet of rock core to confirm the elevation and quality of the bedrock where culverts will be founded. Culverts shall be designed in accordance with all applicable ODOT standards and specifications.

Introduction

1.0 INTRODUCTION

As part of the Hancock County Flood Risk Reduction Program, the Maumee Watershed Conservancy District (MWCD) is planning to widen an additional area of the floodplain bench of the Blanchard River in Hancock County, Ohio, near downtown Findlay, Ohio. The proposed floodplain bench widening covers an approximate area of 19 acres along the north bank of the river and extends from the Norfolk Southern Railroad bridge on the west side of the site to near Dr. Martin Luther King Jr. Way on the east side of the site.

Stantec Consulting Services Inc. (Stantec) was contracted by MWCD to perform engineering and design services for the program, including the geotechnical exploration for the additional hydraulic improvements. Figure 1 shows the proposed bench widening extents with the borings completed by Stantec as part of this exploration.

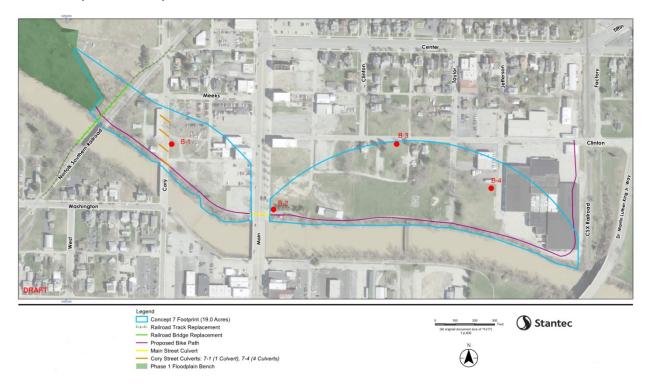


Figure 1. Boring Layout

Geology and Observations

2.0 GEOLOGY AND OBSERVATIONS

2.1 GENERAL

The *Physiographic Regions of Ohio* map (Ohio Department of Natural Resources (ODNR), 1998) indicates that the proposed floodplain widening project is in the Findlay Embayment region. The Findlay Embayment is a broadly rolling lacustrine plain and is an embayment of ancestral Lake Erie where relatively coarse lacustrine sediments collected. This region has very low relief (10 feet) with elevations of 775 to 800 feet.

2.2 SOIL GEOLOGY

According to the *Quaternary Geology of Ohio* map (ODNR, 1999), the project site is predominantly underlain by clayey till deposited during the Late Wisconsinan Age. The clayey till originated as a very flat lake-planted moraine and was planted by waves in glacial lakes. There are small patches of sand, silt, or clay on the surface in many areas.

The soil survey (*Web Soil Survey of Hancock County, Ohio*, United States Department of Agriculture (USDA), 2017) indicates that the site is underlain predominantly by Flatrock silt loam (0 to 2 percent slopes) and Lamberjack-Urban land complex (0 to 2 percent slopes). These soils consist of silt loam, loam, and stratified coarse sandy loam with moderately high to high capacities to transmit water.

The *Drift Thickness Map of Ohio* (ODNR, 2004) suggests a range of soil cover near the project site between 0 and 50 feet.

2.3 BEDROCK GEOLOGY

Bedrock mapping (*Bedrock Geology of the Findlay, Ohio Quadrangle*, ODNR, 1994) and Descriptions of Geologic Map Units (ODNR, 2000) indicates that overburden soils along the channel alignment are underlain by sedimentary bedrock from the Lockport Dolomite Formation of the Silurian System. The Lockport Dolomite is described as white to medium gray dolomite with medium to massive bedding ranging from 30 to 300 feet thick.

According to the Abandoned Underground Mine Locator (ODNR, 2015), mapped underground mines have not been identified in the project vicinity.

The *Ohio Karst Areas* map (ODNR, 2007) does not indicate known karst areas in the vicinity of the project. Probable karst areas are located approximately 10 to 15 miles east of the project area.

Geology and Observations

2.4 SEISMIC

A review of the seismic data available in the project vicinity included the OhioSeis database developed by the ODNR, Division of Geological Survey. The review was performed using the internet mapping service (rev. 2012) at the following website: https://gis.ohiodnr.gov/website/dgs/earthquakes/.

Overall, Ohio has a relatively limited amount of seismic activity. However, within a 20-mile radius of the proposed floodplain widening, there have been six earthquake epicenters with magnitudes ranging between 2.0 and 3.0. The available data reviewed included events that occurred from 1804 to present day.

2.5 HYDROLOGY

The project is located in the Blanchard River Watershed. The Blanchard River flows east to west through the City of Findlay. The proposed floodplain bench widening begins where the Norfolk Southern Railroad crosses the Blanchard River and ends just west of where Dr. Martin Luther King Jr. Way crosses the river.

2.6 HYDROGEOLOGY

Groundwater migrates by both primary and secondary porosity at the site. The soils in the area range from silts and clays to zones with sands and gravels. Surface water seeps into the soil overburden, particularly within the coarser zones. Perched water will often concentrate in the coarser soils and along the soil-bedrock interface. The groundwater will then primarily migrate downward through secondary porosity features such as the existing fractures, joints, and bedding planes, and to a lesser extent by primary porosity through the bedrock matrix. Groundwater follows the path of greater transmissivity downward and laterally until it intercepts the ground surface at seeps or springs, or intercepts the primary water table at varying depths within the bedrock. Regionally, groundwater generally flows in the direction of the surface drainage and intercepts channels and streams at lower elevations in the surrounding watersheds.

Exploration

3.0 EXPLORATION

Four borings were advanced by Stantec to obtain preliminary geotechnical data for use in the design and construction of the proposed floodplain bench widening. A summary of the borings advanced for this project is shown in Table 1. Boring logs are provided in Appendix A.

Boring No.	Northing	Easting	Ground Surface Elevation (ft)	Depth to Auger Refusal (ft)	Elevation of Auger Refusal (ft)
B-1	N/A ¹	N/A ¹	N/A ¹	N/A ²	N/A ²
B-1A	N/A ¹	N/A ¹	N/A ¹	N/A ²	N/A ²
B-1B	503,454.34	1,650,788.49	772.2	19.9	752.3
B-2	503,107.62	1,651,293.87	774.3	15.2	759.1
B-3	503,413.93	1,651,901.18	773.2	19.0	754.2
B-4	503,187.67	1,652,414.56	772.3	19.3	753.0

 Table 1. Boring Summary

1. Locations were not surveyed. B-1 drilled approximately 50 feet south of B-1B; B-1A drilled approximately 65 feet south of B-1B.

2. B-1 terminated at 6.5 feet and B-1A terminated at 3.0 feet due to apparent soil contamination and strong odor of hydrocarbons. No refusal.

The borings were completed with a CME 45 truck-mounted drill rig using 3¼-inch inside diameter (ID) hollow stem augers to advance through soil. Standard penetration test (SPT) sampling was performed at select intervals until auger refusal was encountered in the borings. The energy ratio (ER) of the drill rigs' automatic hammer and drill rod systems was measured on a previous project. The average ER value for the equipment used on this project is 88.4 percent. The boring locations were provided by Bockrath & Associates Engineering and Surveying, LLC.

Borings B-1 and B-1A were terminated early due to apparent soil contamination, as indicated in Table 1. SPT samples recovered in these borings indicate perched water at a depth of approximately three feet that contains a black oily substance and a strong odor of hydrocarbons. The drillers moved 50 feet to the north of B-1 and did not encounter any contaminated soils.

The SPT sampling was performed in accordance with ASTM D1586, without the use of liners. The SPT samples were driven with an automatic hammer and consisted of repeatedly dropping a 140-pound hammer from a height of 30 inches to drive a split-spoon sampler a distance of 18-inches. The number of hammer blows needed to advance the sampler was recorded over three 6-inch increments. The blow count from the first 6-inch increment was discarded due to ground disturbance at the bottom of the borehole. The sum of the blow counts from the second and third 6-inch increments is called the field N-value (N_{field}). The field N-value is corrected to an equivalent rod energy ratio of 60 percent (N₆₀) according to the equation below.

Exploration

$$N_{60} = N_{field} \left(\frac{ER}{60}\right)$$

The depths/elevations of the SPTs with the corresponding field blow counts are shown on the boring logs in Appendix A.

The materials encountered were logged by a geotechnical engineer, with particular attention given to soil type, consistency, and moisture content. Hand pressure readings were performed on selected samples using a pocket penetrometer. The borings were checked for the presence of groundwater during and after drilling with the depth of water recorded on the boring logs. Borings were terminated upon encountering refusal and backfilled with auger cuttings.

The soil samples obtained from the borings were transported to Stantec's geotechnical laboratory. All samples were tested for natural moisture content. Engineering classification testing was performed on selected disturbed SPT samples reflecting the main soil horizons. The engineering classification tests included sieve and hydrometer analysis (ASTM D 422) and Atterberg limits (ASTM D 4318). Details and results of laboratory testing are further discussed in Section 4.1. The laboratory test reports are provided in Appendix B.

Findings

4.0 FINDINGS

4.1 LABORATORY TESTING

4.1.1 Overview

Geotechnical laboratory tests were assigned to select soil samples. Soil samples were tested for soil classification and moisture content. Laboratory testing performed on this project is summarized in Table 2. Results of laboratory testing are provided in Appendix B.

Laboratory Test	Method	Number of Tests
Natural Moisture Content	ASTM D 2216	40
Sieve and Hydrometer Analysis	ASTM D 422	8
Atterberg Limits	ASTM D 4318	8
Soil Classifications	ASTM D 2487	8

Table 2. Summary of Laboratory Testing

4.1.2 Natural Moisture Content

Selected SPT samples were subjected to natural moisture content testing in accordance with ASTM D 2216. Moisture contents ranged from 4 percent to 31 percent with an average of 15 percent. The test results are provided in Appendix B.

4.1.3 Soil Classification

Selected SPT samples were subjected to soil classification testing in accordance with ASTM D 2487 which included sieve and hydrometer analysis in accordance with ASTM D 422 and Atterberg limits in accordance with ASTM D 4318. Classification results are presented in Table 3.

Findings

Boring No.	Sample Type	Depth (ft)	LL (%)	PL (%)	РІ (%)	Classification
B-1B	SPT Composite	1.5 – 6.5	20	15	5	SC-SM
B-1B	SPT Composite	10.0 – 14.0	31	21	10	CL
B-2	SPT Composite	7.5 – 14.0	28	18	10	SC
	SPT Composite	5.0 – 9.0	29	17	12	CL
B-3	SPT Composite	10.0 – 13.4	NP	NP	NP	ML
	SPT Composite	13.4 – 16.5	14	13	1	SM
D 4	SPT Composite	1.5 – 6.0	31	17	14	CL
B-4	SPT Composite	12.5 – 19.0	20	16	4	CL-ML

Table 3. Results of Soil Classification Testing

4.2 SUBSURFACE CONDITIONS

Surface materials encountered consisted of 0.1 to 0.5 feet of topsoil. Below the topsoil, fill material (Soil 1) was encountered and described as brown silty sand, clayey sand, or silty clayey sand. It was further described as damp to moist, medium dense to dense in consistency, and containing a trace of brick fragments, wood, and other debris. The fill material extended to depths ranging from 1.5 feet in B-4 to 15 feet in B-2. The soil classified as SC-SM and SC according to the USCS and A-4 according to the AASHTO method. SPT N-values ranged from 2 to 40 blows per foot, with an average of 13 blows per foot. Natural moisture contents ranged from 4 to 23 percent, with an average of 10 percent. Liquid limits of 20 and 28 and plasticity indices of 5 and 10 were recorded in this material.

Soil 2 was observed below Soil 1 in all borings except B-2. Soil 2 was described as lean clay or sandy lean clay and extended to depths varying from 10.0 feet in B-3 to 15.8 feet in B-1B. Soil 2 classified as CL according to USCS and A-4 or A-6 according to the AASHTO method. It was further described as brown, damp to moist, soft to very stiff in consistency, and containing a trace of organics in some areas. Natural moisture contents ranged from 13 to 24 percent, with an average of 18 percent. SPT N-values ranged from 1 to 25 blows per foot, with an average of 10 blows per foot. Liquid limits of 31, 29, and 31 and plasticity indices of 10, 12, and 14 were recorded in this material, respectively. Pocket penetrometer hand pressures of 2.5 to 3.5 tons per square foot were recorded in this material.

Soil 3 was described as gray, moist, stiff to very stiff silt or silty clay with sand and was encountered below Soil 2 in borings B-3 and B-4. Soil 3 extends to bedrock in B-4. It is classified as ML or CL-ML according to USCS and A-4 according to the AASHTO method. Natural moisture contents ranged from 9 to 31 percent, with an average of 18 percent. SPT N-values ranged from 9 to 70 blows per foot, with an average of 37 blows per foot. The ML classified material was non-plastic, and the CL-ML yielded a liquid

Findings

limit of 20 and plasticity index of 4. Pocket penetrometer hand pressures of 1.75 tons per square foot were recorded in this material.

Soil 4 was described as gray, moist, medium dense to dense, fine to coarse grained clayey sand or silty sand and extends to bedrock in borings B-1B and B-3. Soil 4 classified as SM according to USCS and A-4 according to the AASHTO method. Natural moisture contents ranged from 9 to 14 percent, with an average of 10 percent. SPT N-values ranged from 10 to 29 blows per foot, with an average of 17 blows per foot. A liquid limit of 14 and a plasticity index of 1 was recorded in this material.

The borings were terminated upon encountering auger refusal at depths ranging from 15.2 feet in B-2 to 19.9 feet in B-1B. The auger refusal was likely caused by bedrock, however, confirmatory penetration into bedrock by rock coring was not performed.

Groundwater was encountered in B-3 at a depth of 17.2 feet. The remainder of the borings were dry at completion.

Conclusions and Recommendations

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 GENERAL

The recommendations that follow are based on the information discussed in this report and the interpretation of the subsurface conditions encountered at the site during fieldwork. If future design changes are made, the geotechnical engineers should be notified so that such changes can be reviewed, and the recommendations amended as necessary.

These conclusions and recommendations are based on data and subsurface conditions from the borings advanced during this exploration using the degree of care and skill ordinarily exercised under similar circumstances by competent members of the engineering profession. No warranties can be made regarding the continuity of conditions.

5.2 SLOPE STABILITY

Slope stability analyses were not performed as part of this preliminary geotechnical exploration. Based on the soils encountered and the results of stability analyses performed on the adjacent project, 3:1 (H:V) cut slopes are recommended. Prior to final design, it is recommended that slope stability analyses be performed for any slopes exceeding 10 feet in height to confirm adequate factors of safety against slope failure. Additional borings and laboratory testing will be required to support slope stability analyses.

5.3 SETTLEMENT

Based on the conceptual drawings provided for the current preferred alignment, it appears that no embankments will be constructed as part of this project. If the final design includes constructing embankments for the bike path or other structure, it is recommended that settlement analyses are performed to confirm that estimated settlement values are within recommended tolerances. Additional borings and laboratory testing will be required to support settlement analyses.

5.4 CULVERTS

The conceptual drawings provided for the current preferred alignment indicate that culverts are being considered under Cory Street and Main Street. Based on the depths to bedrock found during this exploration, culverts may be either be soil bearing or rock bearing depending on the size and invert elevation determined in detailed design. Prior to final design, it is recommended that additional borings be drilled near the exact locations of culverts in accordance with Section 303.7.2 of "*Ohio Department of Transportation (ODOT) Specifications for Geotechnical Explorations*". For culverts with a planned diameter or span of 10 feet or greater, additional borings should include 5 feet of rock core to confirm the elevation and quality of the bedrock where culverts will be founded. Culverts shall be designed in accordance with all applicable ODOT standards and specifications.

Conclusions and Recommendations

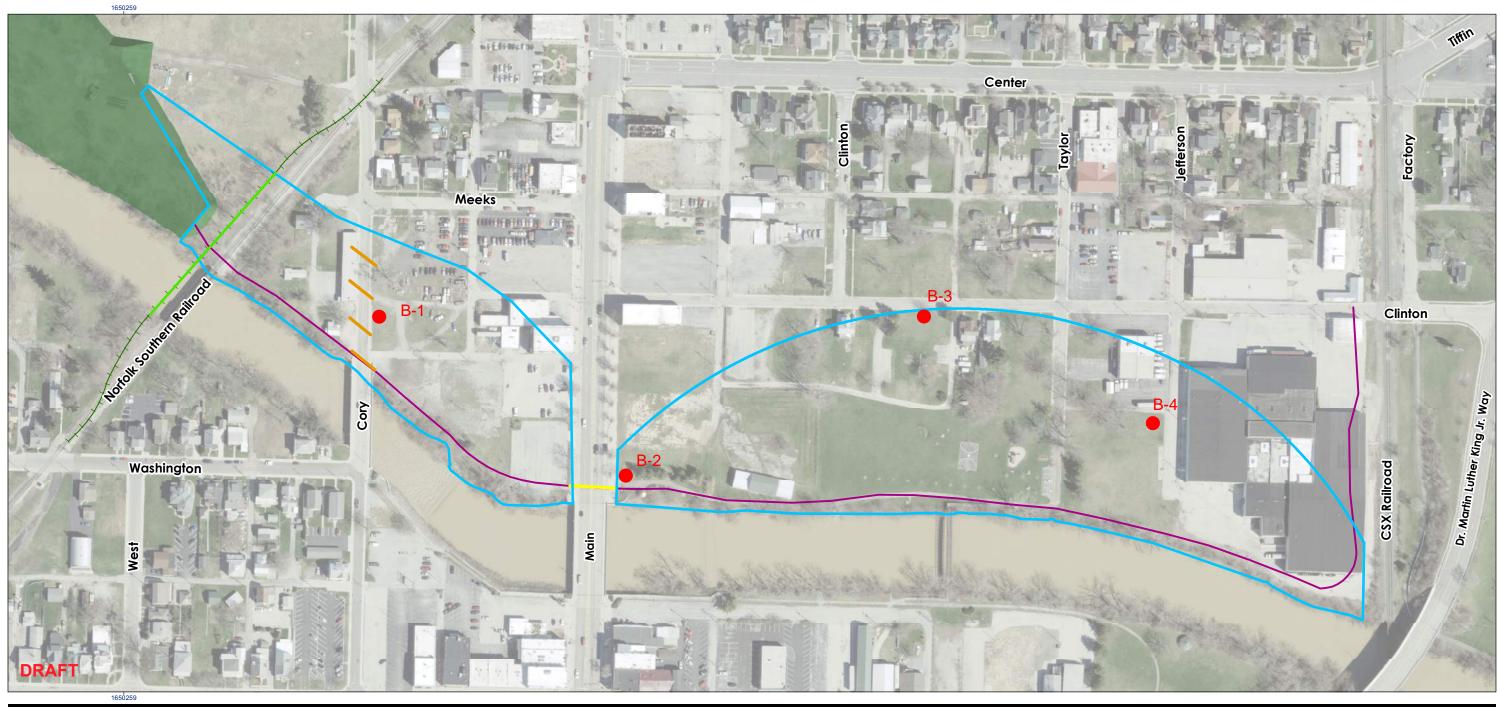
5.5 EARTHWORK RECOMMENDATIONS

5.5.1. Soils with a strong petroleum odor were discovered in borings B-1 and B-1A located in parcel number 570000200180, east of Cory Street. It is recommended that an environmental investigation be performed to confirm the presence and extent of contamination. During construction, contaminated soil should be disposed of off-site in accordance with state and federal regulations.

5.5.2. Clearing of vegetation and topsoil should be performed below the footprint of embankments, if any. The exposed subgrade should be proof-rolled to observe the presence of any soft or unstable areas that may require stabilization. The areas should be proof-rolled using a loaded tandem axle dump truck or similarly heavy equipment in the presence of a geotechnical engineer or trained representative. Surficial soft soils delineated by proof-rolling should be undercut or stabilized in place as per recommendation of the geotechnical engineer.

5.5.3. On-site or borrow material to be used as fill should be approved for such use by the geotechnical engineer. Prior to its use, the contractor should identify the source and provide samples for soil classification and moisture-density testing. Fill material should meet the following requirements:

- Unless otherwise permitted by the geotechnical engineer, borrow material should not consist of soils represented by the following classifications, as determined in accordance with ASTM D 2487: MH, CH, OL, OH, PT.
- The fill material should be free from rubbish, organic matter, frozen soil, muck or other perishable, compressible debris, which prevent compaction to a dense, uniform state. Rock and other hard, durable fragments should be limited to particles displaying maximum dimension of six inches, should not exceed ten percent of the total volume, and should be uniformly distributed throughout the material.
- The maximum dry density of the borrow material should meet or exceed 98 pounds per cubic foot in accordance with ASTM D 698, Standard Specification for Test Methods for Moisture-Density Relations for Soils and Soil-Aggregate Mixtures.


5.5.4. Embankment material should be placed in a maximum of eight-inch (compacted) lifts. Engineered fill shall be compacted to at least 95 percent of standard Proctor density. Some adjustment of moisture content may be required to achieve the desired density. Typically, the water content of low plasticity cohesive soils within -2 to +2 percent of optimum provides the desired density. Field density tests should be performed to verify compaction.

5.5.5. Soil exposed on cut slopes for the floodplain widening will be susceptible to erosion. Seed and mulch should be applied as soon as possible after completion of the cut slopes in order to establish vegetation that will provide erosion protection.

Conclusions and Recommendations

5.5.6. All construction operations involving earthwork should be performed in the presence of a qualified technician who is experienced in monitoring and testing earthwork construction. The technician should operate under the direct supervision of a Professional Engineer experienced in geotechnical engineering. We strongly recommend to your office that our staff be retained for earthwork and foundation excavation observation in order to maintain a continuity of the assessment of soil materials from this study through construction.

APPENDIX A BORING LAYOUT AND LOGS

75

Walnut St

Legend

- Concept 7 Footprint (19.0 Acres)
- Railroad Track Replacement
- Railroad Bridge Replacement
- Proposed Bike Path
 Main Otre at Output
- Main Street Culvert
- Cory Street Culverts: 7-1 (1 Culvert), 7-4 (4 Culverts)
- Phase 1 Floodplain Bench

Putnam St. Sources: Esri, HERE, Garmin, W Sandus USGS, Intermap, Indiay (1997) W HarINCREMENT'P, NRCan, Esri

Washington St

12 W Main Cross St

0 100 200 3 (At original document size of 11x17) 1:2,400

300 Feet

Project Location

Prepared by LEK on 2019-08-23 TR by ACS on 2019-08-23 IR Review by DTH on 2019-08-23 174316204

Findlay, Ohio Client/Project

Maumee Watershed Conservancy District Additional Hydraulic Improvements Figure No.

Title

Additional Benching Layouts Concept 7

Page: 1 of 1

											S	Sta	nte	c Bo	orin	g N	o	B- 1	1			_	
Clie	ent	М	WCD				Bori	ng Locat	ion	503,	45	4.3	5 N;	1,6	50,	788	.5 E	Ξ				_	
Pro	oject Nun	nber_17	74316204.411				Surf	ace Elev	ation	772.	2 f	t	E	Eleva	atio	n D	atu	m_	NA	١VE)88	_	
Pro	oject Nan	ne H	CFRR Additional Benchi	ng			Date	e Started		7/22	/20)	C	Com	plet	ted			7/2	22/2	20	_	
Pro	oject Loc	cation	Hancock County, Ohio				Dep	th to Wa	ter	N/A			Ľ	Date	/Tir	ne		!	N//	Α		_	
Ins	pector		Stantec - L. Talbot				Dep	th to Wa	ter	N/A			Ľ	Date	/Tir	ne			N//	Α		_	
Dri	lling Con	tractor	Stantec - G. Wilson				Drill	Rig Type	e and	ID C	M	E 4	-5C	#3 (#81	2)						_	
Ov	erburder	n Drilling	and Sampling Tools (Ty	vpe ai	nd Siz	e) 3	3.25" I	D HSA, 2	2" SPT	-												_	
Ro	ck Drillin	g and Sa	ampling Tools (Type and	l Size	e) _N//	4																_	
Sa	mpler Ha	ammer T	ype Automatic We	eight	14	0 lb	D	rop <u>30 i</u>	in	_	Ef	fici	end	су	88	8.4	% ((Av	<u>g.)</u>)		_	
Bo	rehole A	zimuth	N/A (Vertical)			E	Boreho	le Inclina	ation (1	rom	Ve	erti					ical		_				
E E	۲(ft)			P P		\$	SAMPLE	ES .) ~			1	UN 	DRAIN	ED SH 2	IEAR	STRE	NGTH 3	I - tsi	f	4		
DEPTH(ft)	ELEVATION(ft)	SOIL	ROCK DESCRIPTION	STRATA PLOT	ш	R	ERY	'S / psi) / %)	WELL Eter									+		Wp		,	WT
DEP	LEV/	00.2		TRA	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	TOR					NT & A omete					3	ŕ		·	-Ť
	ш			Ň		z	R	PRI R	MONITOR					ETRA			•	,	S/F	оот		•	
- 0 -	772.2	Tanaai	1		×		ft		-		10	20) 	30	40	5	0	60	7	0	80	9	90 L
	\772.1/		and with Gravel (FILL),	\bigotimes																			E
- 1 -			ick fragments & debris, with gray & red,	\bigotimes	SPT	1	1.1	3-8-10				•				· · · ·						<u></u>	E
			m dense, dry to damp,	\bigotimes																			E_
- 2 -		fine to	coarse grained grades to trace brick	\bigotimes												<u></u>						<u></u>	E
		fra	agments & debris at 1.5'	\bigotimes	SPT	2	1.2	4-3-8			•												E
- 3 -	769.2	Canaly		\bigotimes										· · · · ·		· · · ·						· · · ·	Ē
			Lean Clay with Gravel and brick fragments,	\bigotimes																			E
- 4 -			silt, gray with red,	\bigotimes	SPT	3	0.2	2-3-4		•												· · · ·	Ē
		hydroc	n stiff, wet, trace arbons	\bigotimes	-																		Ē
- 5 -		-	una da esta tue esta brista	\bigotimes												<u></u>						<u></u>	Ē
		fragme	grades to trace brick ents, organics & debris,	\bigotimes																			Ē
- 6 -		becc	omes brown with gray &	\bigotimes	SPT	4	0.9	1-1-1		•						· · · ·							Ē
	765.7		soft, moist to wet at 5.0'	\mathbb{X}																			Ē
- 7 -		Boring te	erminated due to strong	petro	leum	odoı	r in sa	mple S-3	. Back	fille	dи	/ith	SO	il cu	ttin	gs,	gra	vel	at	top).		Ē
																							Ē.
- 8 -																							Ē
																							Ē
- 9 -																							Ē
																							Ē
-10-																							Ē
																			<u> </u>				-

Page: 1 of 1

٦

										Stantec Boring No. B-1A
Clie	ent	М	WCD				Bori	ng Locat	ion g	503,454.3 N; 1,650,788.5 E
Pro	ject Nun	nber_17	74316204.411				Surf	ace Elev	ation	772.2 ft Elevation Datum NAVD88
Pro	ject Nan	ne H	CFRR Additional Benchi	ng			Date	e Started		7/22/20 Completed 7/22/20
Pro	ject Loo	ation	Hancock County, Ohio				Dep	th to Wa	te <u>r</u> I	N/A Date/Time N/A
Ins	pector _		Stantec - L. Talbot				Dep	th to Wa	te <u>r</u> l	N/A Date/Time N/A
Dri	ling Con	tractor	Stantec - G. Wilson				Drill	Rig Type	e and I	ID_CME 45C#3 (#812)
Ov	erburder	n Drilling	and Sampling Tools (Ty	vpe a	nd Siz	e) 3	3.25" I	D HSA, 2	2" SPT	Γ
Ro	ck Drillin	g and Sa	ampling Tools (Type and	l Size	e) _N//	4				
Sa	mpler Ha	ammer T	ype Automatic We	eight	14	0 lb	D	rop <u>30</u> i	in	Efficiency88.4 % (Avg.)
Bo	rehole A	zimuth	N/A (Vertical)			E	Boreho	ole Inclina	ation (f	from Vertical)
(1	٨(ft)			5		:	SAMPLE	ES		UNDRAINED SHEAR STRENGTH - tsf 1 2 3 4
DEPTH(ft)	ELEVATION(ft)	SOIL/	ROCK DESCRIPTION	STRATA PLOT	ш	R	ERY	S / psi) / %)	WELL	
DEP	LEVA	00.2		TRA	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	IONITOR	WATER CONTENT & ATTERBERG LIMITS
	ш			ίο Ι		z	R	PRE BRE		Pocket Penetrometer/Torvane (tsf) * STANDARD PENETRATION TEST, BLOWS/FOOT •
- 0 -	772.2	. .	1				ft		-	10 20 30 40 50 60 70 80 90
	\772.1/		and with Gravel (FILL),	\bigotimes						
- 1 -			lebris, organics & brick	\bigotimes	SPT	1	1.2	2-6-8		
			ents, brown with gray, m dense, damp to wet,	\bigotimes						
- 2 -			coarse grained, trace	\bigotimes						
		hydroc: becc	omes gray with brown &	\bigotimes	SPT	2	0.9	2-4-3		•
- 3 -	769.2	orange	e, loose, dry to damp at 1.5' [\boxtimes						
		\ Boring te	•	petro	leum d	odor	in san	nple S-1.	Backi	filled with soil cuttings, gravel at top.
- 4 -		0	5,					1		
- 5 -										
- 6 -										
- 7 -										
- 8 -										
										Ē
- 9 -										Ē
3										
-10-										
10-										

Γ

SUBSURFACE LOG

Page: 1 of 2

										S	Sta	nte	c Bo	pring	g No	о. <u>Е</u>	3-1E	3			
Cli	ent	MWCD				Bor	ing Locat	ion	503, [,]	454	4.3	N;	1,6	50,7	788	.5 E					
Pro	oject Nur	nber 174316204.411				Sur	face Elev	ation	772.	2 fl	t	E	leva	atio	n Da	atur	n N	AV	'D8	8	
Pro	oject Nar	ne HCFRR Additional Benchi	ng			Dat	e Started		7/22	/20)	С	com	plet	ed		7	/22	/20)	
Pro	oject Loo	cation Hancock County, Ohio				Dep	oth to Wa	ter	N/A			D)ate	/Tin	ne _		Ν	/A			
Ins	pector	Stantec - L. Talbot				Dep	oth to Wa	ter	N/A			D)ate	/Tin	ne _		Ν	/A			
Dri	lling Cor	tractor Stantec - G. Wilson				Drill	Rig Type	e and		M	Ξ4	5C	#3 (#81	2)						
Ov	erburder	n Drilling and Sampling Tools (Ty	vpe al	nd Siz	e) :	3.25"	ID HSA, 2	2" SPT	-												
Ro	ck Drillin	g and Sampling Tools (Type and	l Size	e) _N//	A																
Sa	mpler Ha	ammer Type Automatic We	eight	14	0 lb	D	rop <u>30 i</u>	n	_	Ef	fici	enc	сy	_ 8	8.4	% (/	٩vg	.)			
Во	rehole A	zimuthN/A (Vertical)			E	Boreho	ole Inclina	ation (1	from	Ve	erti	cal)		V	erti	cal					
	(t t)		5		:	SAMPL	ES	-			1	UNI	DRAIN		IEAR \$			tsf		4	
DEPTH(ft)	NOIT	SOIL/ROCK DESCRIPTION	A PL		Ř	RY	s / () ()	WELL						2			3 			+	
DEPT	ELEVATION(ft)	SUL/RUCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	ORV					IT & A					ŀ	P	- 0	
	E		ST	-	ž	REC	PRE	MONITOR					omete ETRA				-	/FOC	т	ר (*
- 0 -	772.2					ft		Σ		10	20		30	40	50		-	70	8	0	90
	\772.1/	TOPSOIL // Silty Clayey Sand (SC-SM),	\mathbf{X}								· · · · · ·										
4		trace debris, asphalt & brick	\bigotimes	SPT	1	1.1	10-27-13														
- 1 -		fragments, brown & gray with black, medium dense to	\bigotimes																		Ē
_		dense, damp, fine to coarse	\bigotimes						:Ó: :												
- 2 -		grained (FILL) becomes brownish gray with	\bigotimes	SPT	2	0.9	7-9-9														
		black & red at 1.5'	\bigotimes																		
- 3 -			\bigotimes												· · · ·						Ē
			\bigotimes	SPT	3	0.3	6-4-5			*											
- 4 -			\bigotimes																		Ē
			\bigotimes								÷O										
- 5 -			\bigotimes																		Ē
			\bigotimes	SPT	4	1.2	2-3-3											*			
- 6 -			\bigotimes						•												Ē
			\bigotimes									0									
- 7 -	764.7		\bigotimes								· · ·										Ë
		Lean Clay (CL), some silt,																			
- 8 -		trace sand, trace organics, brown, stiff, damp, trace		SPT	5	1.1	2-5-5								*						
		oxidized soil	\square							•											Ē
- 9 -				\parallel)									Ē
	762.2																				
-10-			<u>v / </u>		I		1			1::	::		:1:::	<u>:</u>]:	:::1		L:::	<u>:1</u> :	<u></u>	<u></u>	<u>.</u> F

Page: 2 of 2

											Sta	ante	ec E	Borin	g N	o	3-1E	3		_
Clie	ent	MWCD				Bori	ng Locat	ion	503	,45	54.3	3 N	; 1,0	650,	788	.5 E				-
Pro	ject Nur	nber 174316204.411				Sur	ace Elev	vation	772.	.2	ft		Elev	/atio	n D	atur	n N	AVE)88	
	(ft)		5		S	SAMPLI	ES	-				UI 1	NDRA	INED SI	HEAR		істн - 3	tsf	Л	
DEPTH(ft)	TION		APL		ĸ	ïRΥ	s / (isi) / %)	VELI				-						547	+	
DEP1	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	MONITOR WELL PIEZOMETER	Poo	cke	t Pe	enetr	rome	ATTE eter/To ATION	orvai	ne (ts	f)	[₩] ₽ ►	——————————————————————————————————————	™⊥ ★ ●
-10-						ft		~		10	2	20	30	40	5	06	60	70	80	90
- 11		Sandy Lean Clay (CL), some silt, brown, very soft, moist to wet, fine to medium grained sand		SPT	6	1.1	1-1-1		•											
-12										· · · · · · · · · · · · · · · · · · ·		ŀ	1							
-13		sand becomes fine to coarse grained at 12.5'		SPT	7	1.1	1-0-1		•											
-14											c									
-15 - -16-	756.4	Clayey Sand (SC), some silt,		SPT	⊺8ab	1.5	WH-3-7					0								
- 17-		trace gravel, gray & brown, loose, moist to wet, fine to coarse grained								0										
- 18-	754.3	Severely Weathered									<u>0</u>									
- 19-		Dolomite, gray, moderately strong to strong		SPT	9ab	1.4	9-41-29											•		
	750.0														· · · · · · · · · · · ·					
-20 -21 -22 -22 -22	752.3	Boring terminated at auger refus	al. Be	ackfille	ed wi	th soil	cuttings	, grave	el at	to	p.									

Page: 1 of 2

										S	tan	tec	Bor	ing N	No	B-2			
Clie	ent	MWCD				Bori	ng Locat	ion g	503, ⁻	107	.6	N; ′	1,65	1,29	3.9 E				
Pro	oject Nur	nber 174316204.411				Surf	ace Elev	ation	774.3	3 ft		EI	evat	ion [Datu	m_N	AVD	88	
Pro	oject Nar	ne HCFRR Additional Benchi	ing			Date	e Started		7/21/	20		C	omp	etec	1	7,	/21/2	0	
Pro	oject Loo	tation Hancock County, Ohio				Dep	th to Wa	ter	N/A			Da	ate/T	ïme		N	/A		
Ins	pector	Stantec - L. Talbot				Dep	th to Wa	ter	N/A			Da	ate/1	ime		N	/A		
Dri	lling Cor	tractor Stantec - G. Wilson				Drill	Rig Type	e and	D C	ME	45	5C#	3 (#	812))				
Ov	erburder	n Drilling and Sampling Tools (Ty	/pe ai	nd Siz	e) 3	3.25" I	D HSA, 2	2" SPT	-										
Ro	ck Drillin	g and Sampling Tools (Type and	d Size	e) <u>N</u> //	4														
Sa	mpler Ha	ammer Type Automatic We	eight	14	0 lb	D	rop <u>30 i</u>	n	_	Eff	icie	ency	/ _	88.4	4 % (Avg	.)		
Bo	rehole A	zimuth N/A (Vertical)			E	Boreho	le Inclina	ation (f	rom	Ve	rtic	al)_		Ver	tical				
	l(ft)		PLOT		5	SAMPLE	S	2			1	UND		SHEAI	R STRE	NGTH - 3	tsf	4	
DEPTH(ft)	NOIL	SOIL/ROCK DESCRIPTION	APL		ĸ	ΞRΥ	S / osi) / %)	WELL			-					Ĭ			
DEP	ELEVATION(ft)		STRATA	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	ZOME							ERG LI		Ē	_ 0 _	
	Ξ		ی ا		z	RE	PRE R	MONITOR							ane (t: EST, BL	-	FOOT	ר •	* •
- 0 -	774.3					ft		2	1	0	20	3	0 4	0	50	60	70	80	90
		Silty Sand (FILL), little gravel, trace brick fragments &	\bigotimes																Ē
- 1 -		organics, brown to red, very	\bigotimes	SPT	1	0.9	4-5-9												Ē
		loose to medium dense, dry, fine to coarse grained	\bigotimes						:::: :::0										Ē
- 2 -			\bigotimes																
			\bigotimes	SPT	2	0.1	13-12-9												Ē
- 3 -			X																
			\bigotimes																Ē
- 4 -			\bigotimes																
4			\bigotimes	SPT	3	0.6	19-2-0												
- 5 -			\bigotimes																
5		brick fragment (1.5") at 5.0'	X																
- 6 -			\bigotimes	SPT	4	0.1	4-1-1												
7			\bigotimes																Ē
-7-	766.8		\bigotimes																
0		Clayey Sand with Gravel																	
- 8 -		(SC), some silt, trace wood and debris, brown, medium		SPT	5	1.1	3-11-6												
		dense, damp to moist																	Ē
- 9 -			\square																Ē
10																			
-10-							•			• • • •			• • • • •		_			<u> </u>	

Page: 2 of 2

							_	_				ntec			-						
Clie		MWCD					ng Locat ace Elev	-				5 N;	1,65 leva					147	 /D0		
	-	nber <u>174316204.411</u>				SAMPLE			//4								_			<u> </u>	
(£f))N(ft		LOT					RL R			1	1		2			3		2	ţ	_
DEPTH(ft)	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	MONITOR WELL PIEZOMETER	Po	cket	t Pe	NTEN netro PENE	mete	er/To	rvan	e (ts	f)	I		W O J	₩ _L
-10-						ft		2		10	2			40	50		0	70	8	0	90
-11-		Clayey Sand with Gravel (SC), some silt, trace wood and debris, brown, medium dense, damp to moist -		SPT	6	0.6	5-5-2					**								· · · · · · · · · · · · · · · · · · ·	
-12		(Continued)						-			ď	•									
-13		grades to trace wood & brick fragments						-			· · · · · · · · · · · · · · · · · · ·									· · · · · · · · · · · · · · · · · · ·	
- 14-				SPT	7	0.4	2-3-2	-			0		*								
-15-	759.3	Dolomite, gray, moderately		SPT	8	0.2	50/.2	-												· · · · · · · · · · · · · · · · · · ·	
	~100.1	strong to strong																			
-16-		Boring terminated at split spoon	refus	al. Ba	ckfill	ed wit	h soil cui	ttings.													
-17-																					
-18-																					
-19-																					
-20																					
-21-																					
-22																					
-23-																					
																					_ <u>F</u>

Page: 1 of 2

										Sta	ante	c Bor	ing l	No.	B -	3			_
lie	ent	MWCD				Bori	ng Locat	ion	503,4	413.	9 N;	1,65	1,90)1.2	Е				-
ro	ject Nur	nber 174316204.411				Sur	ace Elev	ation	773.2	2 ft	_ E	levat	ion	Dat	um_	NA	٧D	88	_
ro	ject Nar	ne HCFRR Additional Benchi	ng			Date	e Started		7/22/	20	_ C	comp	leteo	d		7/2	2/2	20	_
ro	ject Loo	cation Hancock County, Ohio				Dep	th to Wa	ter	17.2	ft	_ D	ate/1	īme	<u>،</u>		7/2	2/2	20	_
ns	pector	Stantec - L. Talbot				Dep	th to Wa	te <u>r</u> l	N/A		_ D	ate/1	īme	÷		N/A	4		-
Dril	ling Cor	tractor Stantec - G. Wilson				Drill	Rig Typ	e and	ID C	ME	45C;	#3 (#	812)					-
Dve	erburder	n Drilling and Sampling Tools (Ty	vpe ai	nd Siz	e) 3	3.25" I	D HSA, 2	2" SPT	Γ										_
Ro	ck Drillin	g and Sampling Tools (Type and	l Size	e)_N/	A														_
Sar	mpler Ha	ammer Type Automatic We	eight	14	0 lb	D	rop <u>30</u>	in		Effic	cienc	у	88.	4 %) (Av	/g.)			_
Bor	ehole A	zimuth N/A (Vertical)			E	Boreho	ole Inclina	ation (f	from	Verl	tical)		Ver	rtica	l				-
	(H)		н		5	SAMPLI	ES	/			UNI	DRAINED		AR STR		'H - tsf	I		
וווי	NOL		DL0		R	RY	si) /	WELL			1		2		3			4	
חברים שוויש	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	OR V OME	WAT	ER CO	ONTEN	IT & AT	TERB	ERG	LIMIT	S	W _P	₩ —↔	W 1
-	Ц		ST		N	REC	PRES	MONITOR				ometer ETRATI					оот		*
_	773.2					ft		ž						50 50	60	v5/F0 70	_	80	90
) -	\773.1/		\square																Ē
		Silty Sand (FILL), trace gravel, trace organics &	\bigotimes	SPT	1	1.1	4-7-8												Ë
- 1		debris, brown, medium	\bigotimes							•									Ē
		dense, dry, fine to coarse grained	\bigotimes						0										Ē
2 -		grades to little clay, no	\bigotimes	SPT	2	0.8	3-7-8							· · · · · · · · · · · · · · · · · · ·		· · · ·		· · · · · · · · · · · · · · · · · · ·	
	770.2	organics at 1.5'	\bigotimes																
3 -	110.2	Clayey Sand (FILL), trace	\bigotimes															· · · · · · · · · · · · · · · · · · ·	
		debris, brown with white, medium dense, dry to damp,	\bigotimes	SPT	3	1.2	3-7-8												
	768.7	fine to medium grained	\bigotimes							•									
	100.1	Sandy Lean Clay (CL), some	\mathbb{N}							0									Ē
; -		silt, trace gravel, brown with												<u>: ::</u> : ::	<u>::</u> ::::::::::::::::::::::::::::::::::	<u> </u>		: : : : : :	<u>:::</u> ::: :::
		white & orange, stiff to very stiff, dry to damp, trace		SPT		1.4	4-8-10												E
; -		oxidized soil			4	1.4	4-0-10			•								<u>:</u> :::::	
										a		H							Ē
/ -														<u> </u>		<u></u>			<u> </u>
		becomes damp to moist at	\square	μ															Ē
	765.2	7.5'	[A]													*			
		Lean Clay (CL), some silt,		SPT	5ab	1.5	4-5-6									*			
1.1.1		trace sand, brownish gray, stiff, damp to moist	\mathbb{N}	Ц							b								÷
	763.7	-																	Ē
- - -																			Ē
0																			

Page: 2 of 2

٦

									Sta	ntec Bo	ring N	lo E	3-3			
Clie	ent -	MWCD				Bori	ng Locat	tion	503,413.9	N; 1,6	51,90 ⁻	1.2 E				
Pro	ject Nur	nber 174316204.411				Surf	ace Elev	vation	773.2 ft	Eleva					38	
æ	۸(ft)		5		\$	SAMPLE	ES	<u> </u>	1	UNDRAINE	ED SHEAF		GTH - ts [.] 3	f	▲ 4	•
DEPTH(ft)	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) / RQD (%)	MONITOR WELL PIEZOMETER	WATER CON Pocket Per STANDARD	netromete	TTERBE	RG LIM	IITS F)		W •••••	W _L
10						ft		ž	10 20		40 5				30	90
-10- -11-		Silt (ML), little clay, gray, stiff, moist - (Continued)		SPT	6	1.5	3-4-5			Ö.						
-12-								-								
- 14	759.8	Silty Sand (SM), trace gravel, gray with white, dense, moist,		SPT	7ab	1.5	3-4-8	-	e cii):						
- 15-		fine to coarse grained grades to no gravel at 15.0'						-								
- 16		grades to no graver at rolo		SPT	8	1.0	5-14-15			•						
- 17-	756.0			⊻					0							
-18		Clayey Gravel (SEVERELY WEATHERED DOLOMITE), little silt, little sand, brownish gray & white, dense, moist to		SPT	9	0.9	3-8-50/.5									108
	754.2	wet, fine to coarse grained						-								Ē
-19 -20 -21		Boring terminated at auger refus	al. B	ackfille	d wi	ith soil	cuttings	, grave	el at top.			1	<u></u>	L::::	1	
-22																

Page: 1 of 2

									Stan	tec Boring I	No. B-4	
Clie	ent	MWCD				Bori	ng Locat	ion g	503,187.7 I	N; 1,652,41	4.6 E	
Pro	oject Nur	nber 174316204.411				Surf	ace Elev	ation	772.3 ft	Elevation	Datum NAVE	D88
Pro	oject Nar	ne HCFRR Additional Benchi	ng			Date	e Started		7/21/20	Completed	d7/21/2	20
Pro	oject Loo	cation Hancock County, Ohio				Dep	th to Wa	te <u>r</u> l	N/A	Date/Time	eN/A	
Ins	pector	Stantec - L. Talbot				Dep	th to Wa	ter	N/A	Date/Time	N/A	
Dri	lling Con	tractor Stantec - G. Wilson				Drill	Rig Type	e and	ID CME 45	C#3 (#812)	
Ov	erburder	n Drilling and Sampling Tools (Ty	/pe ar	nd Siz	e) 3	3.25" I	D HSA, 2	2" SPT	Г			
Ro	ck Drillin	g and Sampling Tools (Type and	l Size	e)_N//	A							
Sa	mpler Ha	ammer Type Automatic We	eight	14	0 lb	D	rop 30 i	n	Efficie	ncy 88.	4 % (Avg.)	
Bo	rehole A	zimuth N/A (Vertical)			В	oreho	ole Inclina	ation (f	_ from Vertica	al) Ver	tical	
	f)		F			SAMPLE	ES	_		UNDRAINED SHEA	R STRENGTH - tsf	
(ff	i)NO		PL0		~	~~) (<u>-</u>	ERL	1	2	3	4
DEPTH(ft)	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PLOT	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) RQD (%)	≥⊡	WATER CONT	ENT & ATTERB	ERG LIMITS 📕	W W
	ELE		STF	-	Ñ	REC	BLG RES RQ	MONITOR		etrometer/Torv	. ,	*
	770.0					ft	<u> </u>	M	STANDARD P 10 20		EST, BLOWS/FOOT 50 60 70	г • 80 90
- 0 -	772.3 \772.2/	Topsoil										
	.771.7	Silty Sand (FILL), trace	\bigotimes	SPT	1ab	1.0	1-3-1		0			
- 1 -	770.0	gravel, trace organics, tan, very loose, dry	\bigotimes		Tab	1.0	101		•			::::::= :::::::=
	770.8	Silty Sand (FILL), trace glass	\mathbb{N}						φ			
- 2 -		& debris, dark brown, very loose, damp									· * · · · · · · · · · · · · · · · · · · ·	<u>: : : : : : =</u>
		Sandy Lean Clay (CL), some		SPT	2	0.6	2-4-2					: : : : : : <u> </u>
- 3 -		silt, trace gravel, orangish brown, medium stiff to very		<u> </u>					·····		· ·	: : : : : : E : : : : : : E : : : : : : : E
		stiff, dry to damp		<u> </u>								
- 4 -		trace stone fragments, becomes brown to orangish	\square									
		brown at 3.5'		SPT	3	0.9	2-3-5				:	: : : : : : <u> </u>
- 5 -			\square							• • • • • • • • • • • • • • • • • • •		
		becomes brown with white at 5.0'										
- 6 -	766.3			SPT	4ab	1.3	5-9-11					
		Silty Sand (SM), trace clay, brown, medium dense, damp							*			
		to moist, fine grained							φ.			
- 7 -	764.8											
		Sandy Lean Clay (CL), some										
- 8 -		silt, brownish gray with orange, stiff, damp		SPT	5	1.4	5-10-6			· · · · · · · · · · · · · · · · · · ·	Image: state Image: state<	
		J , , F	\square									: : : : : : = = : : : : : : = = = : : : : : : = = =
- 9 -	762.8			\parallel								<u> </u> - <u>-</u> <u>-</u>
	102.0		\square									: : : : : : <u> </u>
-10-											<u>- </u>	::I:::: <u>F</u>

Page: 2 of 2

										St	ante	ec E	Bori	ng l	No.	B-	4			_
Clie	ent	MWCD				Bori	ing Locat	tion	503,	187.	7 N;	; 1,	652	2,41	4.6	E				-
Pro	ject Nur	nber 174316204.411		1		Sur	face Elev	ation	772.:	3 ft	_				Datı	_			88	
H(fft) TON(fft)					5	SAMPL	ES	1			UN 1	IDRA		SHEA 2	R STR	ENGT	'H - ts	f	4	
DEPTH(ft)	ELEVATION(ft)	SOIL/ROCK DESCRIPTION	STRATA PL	ТҮРЕ	NUMBER	RECOVERY	BLOWS / PRESS.(psi) / RQD (%)	MONITOR WELL PIEZOMETER	Pocl	ket P	enetr	ome	& ATT eter/	ERBI	ERG L ane (EST, E	.IMIT tsf)				₩ _I ★
10						ft		Σ	1			30	4		50	60			80	90
-10-		Lean Clay (CL), some silt, little sand, trace gravel, gray, very stiff, damp - (Continued)		SPT	6	1.4	5-15-10			0	•									K
-12-	760.3	Silty Clay with Sand (CL-ML),								J										
-13-		little gravel, gray, stiff to very stiff, damp to moist, fine grained sand		SPT	7	1.0	3-5-6													
-14-								-				0								
-15-								-											· · · · · · · · · · · · · · · · · · ·	
-16-	756.0	Dolomite, gray, moderately		SP1	8ab	0.4	19-41-29				D						•		· · · · · · · · · · · · · · · · · · ·	
-17-		strong to strong Silty Clay with Sand (CL-ML), little gravel, gray, very stiff,																		
-18-		moist, fine grained sand		SP1	9	0.8	3-29-30					· · · · · · · · · · · · · · · · · · ·				•			· · · · · · · · · · · · · · · · · · ·	
-19-	753.0							-	¢											
-20-		Boring terminated at auger refus	al. Ba	ackfille	ed wi	th soii	l cuttings	, grave	el at i	top.	:1:::	:1:		<u></u>	:1:::	:1:	<u> </u>		<u></u>	
-21-																				
-22																				
-23																				
																				Ē
1 -																				Ē

APPENDIX B LABORATORY TEST RESULTS

Summary of Soil Tests

Project Name	HCFRR Addition	nal Benching	Project Number	174316204
		3.0'-4.5', 5.0'-6.5		179
Sample Type	SPT Composite		Date Received	
			Date Reported	8-18-20
			Test Results	
Natu	ral Moisture Co	ontent	Atterberg Limits	
Test Not Per			Test Method: ASTM D 4318 Method	AL
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	20
			Plastic Limit:	15
	rticle Size Anal		Plasticity Index:	5
	Method: ASTM I		Activity Index:	0.4
	ethod: ASTM D			
Hydrometer	Method: ASTM	D 422		
			Moisture-Density Relation	<u>nship</u>
	icle Size	%	Test Not Performed	
Sieve Size	()	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
1 1/2"	37.5	100.0		
3/4"	19	95.1		
3/8"	9.5	91.6	California Bearing Rat	tio
No. 4	4.75	88.7	Test Not Performed	
No. 10	2	81.7	Bearing Ratio (%):	N/A
No. 40	0.425	80.5	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	45.5	Compacted Moisture Content (%):	N/A
	0.02	23.7		
	0.005	15.4		
	0.002	11.2	Specific Gravity	
estimated	0.001	8.9	Estimated	
		. <u>.</u>		
Plus 3 in. ma	aterial, not includ	led: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	2.70
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	11.3	18.3	Classification	
Coarse Sar		1.2	Unified Group Symbol:	
Medium Sar			Group Name: Silt	y, clayey sand
Fine Sand		35.0		
Silt	30.1	34.3		
Clay	15.4	11.2	AASHTO Classification:	A-4 (0)
Comments:			_1 (
			Reviewed By	RI
				\bigcirc

Particle-Size Analysis of Soils ASTM D 422

Stantec

Project Name

Source

 Project Number	174316204

Lab ID 179

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

HCFRR Additional Benching

B-1B, 1.5'-3.0', 3.0'-4.5', 5.0'-6.5'

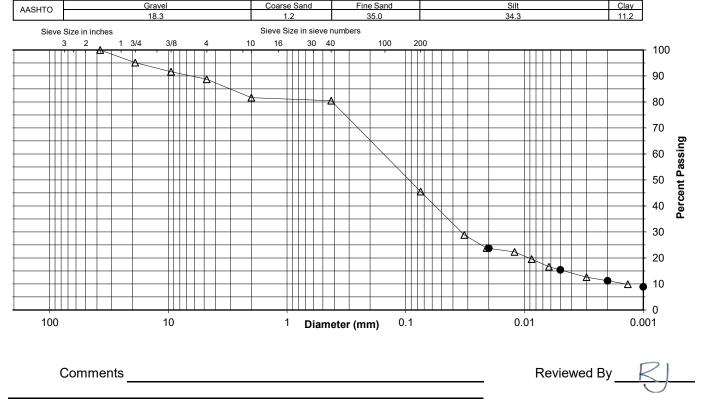
Particle Shape Angular Particle Hardness: Hard and Durable

Tested ByDWTest Date08-10-2020Date Received08-04-2020

Maximum Particle size: 1 1/2" Sieve

Sieve	%
Size	Passing
1 1/2"	100.0
3/4"	95.1
3/8"	91.6
No. 4	88.7
No. 10	81.7

Analysis for the portion Finer than the No. 10 Sieve

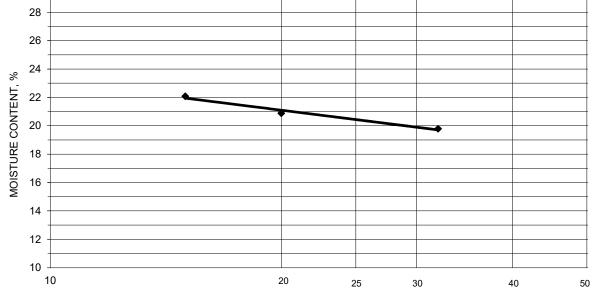

Analysis Based on -3 inch fraction only

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

ne No. 10 ຮ	bieve
No. 40	80.5
No. 200	45.5
0.02 mm	23.7
0.005 mm	15.4
0.002 mm	11.2
0.001 mm	8.9

				Particle Size	Distribution		
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTIV	4.9	6.4	7.0	1.2	35.0	30.1	15.4
		0		0	Eine Orand	0:14	


Stantec Consulting Services Inc. Lexington, Kentucky

ATTERBERG LIMITS

Project	HCFRR Additional	Benching			Project No.	174316204
Source	B-1B, 1.5'-3.0', 3.0'-	4.5', 5.0'-6.5'			Lab ID	179
					% + No. 40	20
Tested By	, KWS	Test Method	ASTM D 4318 M	lethod A	Date Received	08-04-2020
Test Date	08-12-2020	Prepared	Dry	-		
		T = -		•		
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	19.87	18.26	10.97	15	22.1	
	17.48	16.34	10.88	20	20.9	
	19.21	17.87	11.10	32	19.8	20
		<u> </u>				
			Liquid	Limit		
	30					
	28					
	26					

NUMBER OF BLOWS

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.29	16.48	11.19	15.3	15	5
18.14	17.26	11.47	15.2		

Remarks:

Reviewed By

Summary of Soil Tests

Project Name	HCFRR Additio	nal Benching	Project Number	174316204
	B-1B, 10.0'-11.5		,Lab ID	184
- · - ·				
Sample Type	SPT Composite		Date Received	
			Date Reported	8-18-20
			Test Results	
Natu	ral Moisture Co	ontent	Atterberg Limits	
Test Not Per	formed		Test Method: ASTM D 4318 Method	AL
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	31
			Plastic Limit:	21
Pa	rticle Size Anal	<u>ysis</u>	Plasticity Index:	10
Preparation	Method: ASTM	D 421	Activity Index:	0.6
Gradation M	ethod: ASTM D	422		
Hydrometer	Method: ASTM	D 422		
			Moisture-Density Relatio	<u>nship</u>
	icle Size	%	Test Not Performed	
Sieve Size	e (mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	
	N/A		Over Size Correction %:	N/A
1 1/2"	37.5	100.0		
3/4"	19	98.2		
3/8"	9.5	97.9	California Bearing Rat	tio
No. 4	4.75	97.9	Test Not Performed	
No. 10	2	97.5	Bearing Ratio (%):	N/A
No. 40 No. 200	0.425	78.1 56.3	Compacted Dry Density (lb/ft ³):	N/A N/A
NO. 200	0.075		Compacted Moisture Content (%):	IN/A
	0.002	36.5 23.0		
	0.003	15.8	Specific Gravity	
estimated	0.002	11.1	<u>Specific Gravity</u> Estimated	
estimated	0.001	11.1	LStimated	
Plus 3 in ma	aterial, not includ	1ed: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		2.1 0
Range	(%)	(%)	L	
Gravel	2.1	2.5	Classification	
Coarse Sar		19.4	Unified Group Symbol:	CL
Medium Sar			Group Name: S	andy lean clav
Fine Sand		21.8		
Silt	33.3	40.5		
Clay	23.0	15.8	AASHTO Classification:	A-4 (3)
		<u>.</u>		
Comments:				
-				
			Reviewed By	RI
•				\bigcirc

Particle-Size Analysis of Soils ASTM D 422

Stantec

Project Name

Source

ASTM

Project Number	174316204
Lab ID	184

%

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

HCFRR Additional Benching

B-1B, 10.0'-11.5', 12.5'-14.0'

Particle Shape Angular Particle Hardness: Hard and Durable

Tested ByDWTest Date08-10-2020Date Received08-04-2020

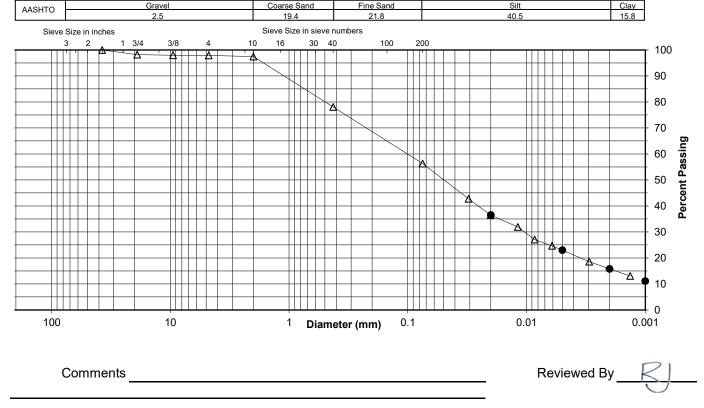
Maximum Particle size: 1 1/2" Sieve

Size	Passing
1 1/2"	100.0
3/4"	98.2
3/8"	97.9
No. 4	97.9
No. 10	97.5

Sieve

<u>___</u>

Analysis for the portion Finer than the No. 10 Si


Analysis Based on -3 inch fraction only

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

he No. 10 Sieve					
No. 40	78.1				
No. 200	56.3				
0.02 mm	36.5				
0.005 mm	23.0				
0.002 mm	15.8				
0.001 mm	11.1				

Particle Size Distribution						
Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
1.8	0.3	0.4	19.4	21.8	33.3	23.0

Stantec Consulting Services Inc. Lexington, Kentucky

ATTERBERG LIMITS

Project	HCF	HCFRR Additional Benching Project No. 174316204					174316204		
Source	B-1E	-1B, 10.0'-11.5', 12.5'-14.0'						Lab ID	184
								% + No. 40	22
Tested By		KWS	Test Method	ASTM D 43	18 M	ethod A	1	Date Received	08-04-2020
Test Date	C	8-12-2020	Prepared	Dry					
		et Soil and	Dry Soil and				_		
	_	Fare Mass	Tare Mass	Tare Ma	SS	Numb		Water Content	
		(g)	(g)	(g)		Blo		(%)	Liquid Limit
		17.87	16.14	10.82		1	7	32.5	
		17.88	16.26	11.11		24	4	31.5	
		18.32	16.66	11.33		2	8	31.1	31
						l !			
	40	1			quia	Limit			
		-							
	38								
	36								
	~ 4								
*	34								
LN TN	32	-		+					
L L L L L L L L L L L L L L L L L L L		-							
C	5 30								
L L L L L L L L L L L L L L L L L L L	28								
ITS	5	-							
MOISTLIRE CONTENT	26								
	24								
		+							
	22								
	20								
		10		2	0	2	5	30	40 50

NUMBER OF BLOWS

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.05	15.98	10.93	21.2	21	10
17.93	16.87	11.61	20.2		

Remarks:

Reviewed By

Summary of Soil Tests

Project Name	HCFRR Additional Benching Project Number 174316204							
Source	B-2, 7.5'-9.0', 10							
Sample Type	SPT Composite	:	Date Received					
			Date Reported	8-17-20				
Test Results								
Natu	ural Moisture Co	ontent	Atterberg Limits					
Test Not Pe	rformed		Test Method: ASTM D 4318 Method	IA				
Moistu	ure Content (%):	N/A	Prepared: Dry					
			Liquid Limit:	28				
			Plastic Limit:	18				
Pa	article Size Anal	<u>ysis</u>	Plasticity Index:	10				
Preparation	Method: ASTM I	D 421	Activity Index:	0.9				
Gradation M	lethod: ASTM D	422						
Hydrometer	Method: ASTM	D 422						
			Moisture-Density Relation	nship				
Par	ticle Size	%	Test Not Performed					
Sieve Siz	e (mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A				
	N/A		Maximum Dry Density (kg/m ³):	N/A				
	N/A		Optimum Moisture Content (%):	N/A				
	N/A		Over Size Correction %:	N/A				
1 1/2"	37.5	100.0	Over Size Correction %	N/A				
3/4"	19	91.0						
3/4	9.5	84.3	California Bearing Rat					
No. 4	4.75	80.4	Test Not Performed	10				
No. 10	2	73.8	Bearing Ratio (%):	N/A				
No. 40	0.425	65.3	Compacted Dry Density (lb/ft ³):	N/A				
No. 200		37.0	Compacted Moisture Content (%):	N/A				
	0.02	24.5						
	0.005	16.4	Specific Crowity					
estimated	0.002	11.7 9.2	Specific Gravity Estimated					
estimateu	0.001	9.2	Estimated					
Plus 3 in m	aterial, not includ	led: 0 (%)	Particle Size:	No. 10				
1 103 5 11. 11		ieu. 0 (70)	Specific Gravity at 20° Celsius:					
	ASTM	AASHTO		2.10				
Range	(%)	(%)						
Gravel	19.6	26.2	Classification					
Coarse Sa		8.5	Unified Group Symbol:	SC				
Medium Sa			Group Name: Clayey sa					
Fine San		28.3						
Silt	20.6	25.3						
Clay	16.4	11.7	AASHTO Classification:	A-4(0)				
	•	·	」 ∟	· · · ·				
Comments:								
			Reviewed By	_K_				
				\bigcirc				

Particle-Size Analysis of Soils ASTM D 422

Stantec

Project Name

Source

Project Number 174316204 193

Lab ID

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

HCFRR Additional Benching

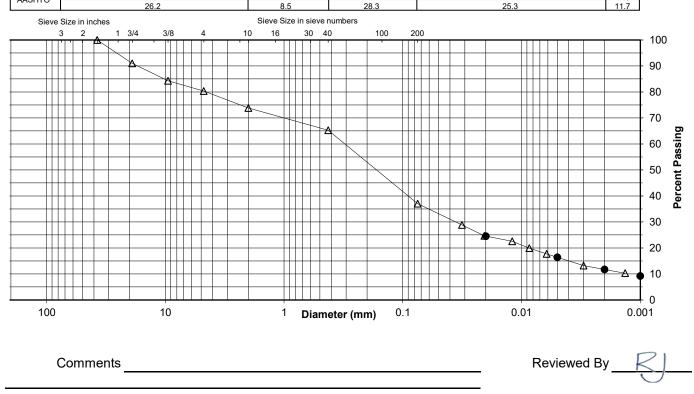
B-2, 7.5'-9.0', 10.0'-11.5', 12.5'-14.0'

Particle Shape Angular Particle Hardness: Hard and Durable

Tested By DW Test Date 08-10-2020 Date Received 08-04-2020

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only

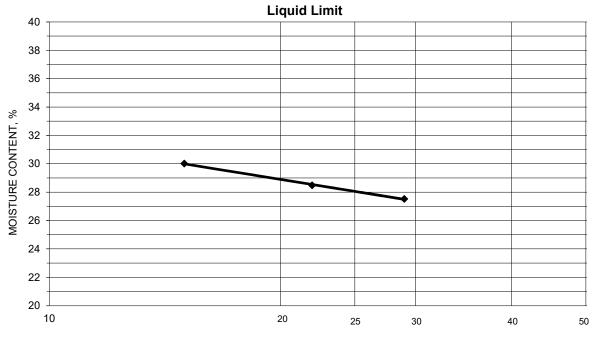

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

%
Passing
100.0
91.0
84.3
80.4
73.8

ie No. 10 Sieve					
No. 40	65.3				
No. 200	37.0				
0.02 mm	24.5				
0.005 mm	16.4				
0.002 mm	11.7				
0.001 mm	9.2				

Particle Size Distribution									
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay		
	9.0	10.6	6.6	8.5	28.3	20.6	16.4		
AASHTO	Gravel			Coarse Sand	Fine Sand	Silt		Clay	



Stantec Consulting Services Inc. Lexington, Kentucky

Project	HCFRR Additional E	Benching		Project No.	174316204	
Source	B-2, 7.5'-9.0', 10.0'-1	1.5', 12.5'-14.0'	Lab ID	193		
		% + No. 40	35			
Tested By	KWS	Date Received	08-04-2020			
Test Date	08-14-2020	Prepared	Dry			
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	18.02	16.44	10.70	29	27.5	
	19.05	17.21	10.75	22	28.5	
	19.03	17.16	10.93	15	30.0	28

NUMBER OF BLOWS

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.41	16.46	11.06	17.6	18	10
16.81	15.88	10.78	18.2		

Remarks:

Project Name	HCFRR Additio	nal Benching	Project Number	174316204
Source	B-3, 5.0'-6.5', 8	.0'-9.0'	Lab ID	200
				0.4.00
Sample Type	SPT Composite	<u>}</u>	Date Received Date Reported	8-4-20
				0-10-20
			Test Results	
Natu	ral Moisture Co	ontent	Atterberg Limits	
Test Not Per			Test Method: ASTM D 4318 Method	AL
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	
			Plastic Limit:	17
	rticle Size Anal		Plasticity Index:	
•	Method: ASTM		Activity Index:	0.4
	ethod: ASTM D			
Hydrometer	Method: ASTM	D 422	Maiatura Danaita Dalatia	
Part	icle Size	%	Moisture-Density Relatio	nsnip
Sieve Size		Passing		N/A
	N/A	i assiriy	Maximum Dry Density (lb/ft ³):	N/A
			Maximum Dry Density (kg/m ³):	
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
0/48	N/A	400.0		
3/4"	19	100.0	O d'étamis De seine De	(1 -
3/8"	9.5	99.6	California Bearing Rat	<u>(10</u>
No. 4	4.75	99.2	Test Not Performed	N1/A
No. 10	2	98.1	Bearing Ratio (%):	
No. 40	0.425	95.5	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	89.6	Compacted Moisture Content (%):	N/A
	0.02	73.8		
	0.005	46.3	Creatific Crevity	
estimated	0.002	30.2 21.0	Estimated <u>Specific Gravity</u>	
estimateu	0.001	21.0	Estimated	
Plus 3 in. ma	aterial, not inclue	ded: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	-
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.8	1.9	<u>Classification</u>	
Coarse Sar		2.6	Unified Group Symbol:	
Medium Sa			Group Name:	Lean clay
Fine Sand		5.9		
Silt	43.3	59.4		
Clay	46.3	30.2	AASHTO Classification:	A-6(9)
			┘ └────	
Comments:				
				\mathbb{P}^{1}
			Reviewed By	<u> </u>
				\smile

Stantec

Project Name Source

HCFRR Additional Benching	Project Number	174316204
B-3, 5.0'-6.5', 8.0'-9.0'	Lab ID	200
	-	

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421
-	

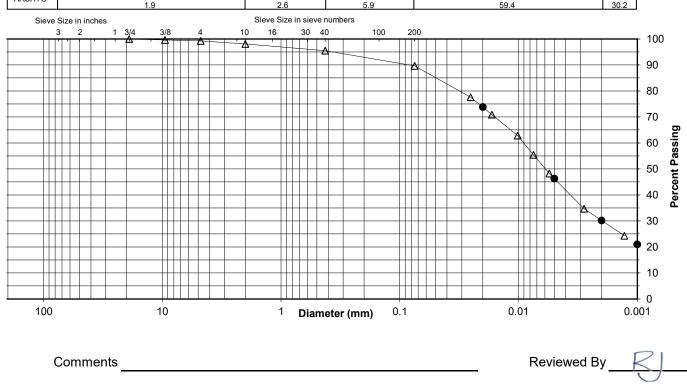
Particle Shape Angular Particle Hardness: Hard and Durable

Tested ByMWTest Date08-10-2020Date Received08-04-2020

Size	Passing
3/4"	100.0
3/8"	99.6
No. 4	99.2
No. 10	98.1

Maximum Particle size: 3/4" Sieve

Analysis for the portion Finer than the No. 10 Sieve


Analysis Based on -3 inch fraction only

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

he No. 10 Sieve						
No. 40	95.5					
No. 200	89.6					
0.02 mm	73.8					
0.005 mm	46.3					
0.002 mm	30.2					
0.001 mm	21.0					

	Particle Size Distribution									
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay			
ASTM	0.0	0.8	1.1	2.6	5.9	43.3	46.3			
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clay		
AASHIO										

24

22

20 10

ATTERBERG LIMITS

Project	HCFRR Additional Benching							Project No.	174316204
Source	B-3, 5	5.0'-6.5', 8.0'-9	.0'	Lab ID	200				
								% + No. 40	5
Tested By		KWS Test Method ASTM D 4318 Method A						Date Received	08-04-2020
Test Date	08	3-12-2020	Prepared	Dry					
	1								
		et Soil and	Dry Soil and				_		
	Т	are Mass	Tare Mass	Tare Ma	SS	Numb		Water Content	
		(g)	(g)	(g)		Blo	WS	(%)	Liquid Limit
		17.21	15.76	10.93		1	7	30.0	
		17.51	16.05	11.11		2	1	29.6	
		17.44	15.93	10.60		2	8	28.3	29
						l :			
	40 - Liquid Limit								
	38 -								
	36 -								
	-								
~	34 -								
MOISTLIRE CONTENT	32 -								
Ц Е									
	30 -								
Ľ Ľ	, j								
TUT TUT	28 -						•		
S	26 -								
- M									

NUMBER OF BLOWS

25

30

PLASTIC LIMIT AND PLASTICITY INDEX	

20

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
16.95	16.01	10.55	17.2	17	12
17.40	16.45	11.01	17.5		

Remarks:

Reviewed By

40

50

Project Name	HCFRR Additio	nal Benching	Project Number	174316204
	B-3, 10.0'-11.5',		Lab ID	203
Sample Type	SPT Composite)	Date Received	8-4-20
			Date Reported	8-18-20
			Test Results	
Natu	ral Moisture Co	ontent	Atterberg Limits	
Test Not Per	formed		Test Method: ASTM D 4318 Method	AL
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	NP
			Plastic Limit:	NP
	rticle Size Anal		Plasticity Index:	
	Method: ASTM		Activity Index:	N/A
	ethod: ASTM D			
Hydrometer I	Method: ASTM	D 422		
Deuti		%	Moisture-Density Relatio	nship
	cle Size		Test Not Performed	N1/A
Sieve Size	()	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
	N/A			
	N/A			
	N/A		California Bearing Rat	tio
No. 4	4.75	100.0	Test Not Performed	N. / A
No. 10	2	99.9	Bearing Ratio (%):	
No. 40	0.425	99.8	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	98.1	Compacted Moisture Content (%):	N/A
	0.02	61.8		
	0.005	22.4	On a sifi a Onesita	
estimated	0.002	12.8	<u>Specific Gravity</u> Estimated	
estimated	0.001	8.6	Estimated	
Plus 3 in ma	terial, not includ	1ed: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	-
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	0.0	0.1	Classification	
Coarse San	id 0.1	0.1	Unified Group Symbol:	ML
Medium Sar	nd 0.1		Group Name:	
Fine Sand	1.7	1.7		
Silt	75.7	85.3		
Clay	22.4	12.8	AASHTO Classification:	A-4 (0)
Comments:				
-				
-			Reviewed By	RI
-				$\overline{\bigcirc}$
-				

Stantec

Project Name

Source

 Project Number	174316204

Lab ID 203

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

Particle Shape Angular Particle Hardness: Hard and Durable

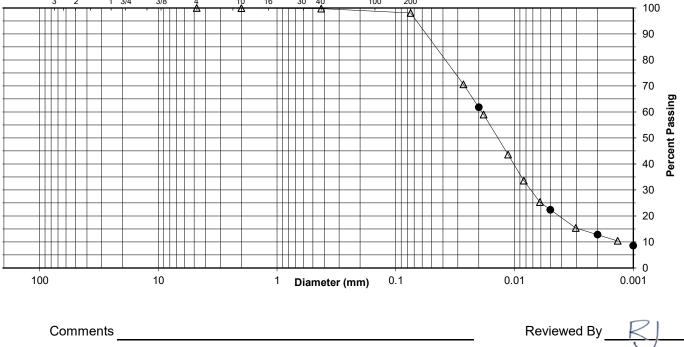
Tested ByMWTest Date08-10-2020Date Received08-04-2020

Maximum	Particle	size:	No.	4 Sieve

HCFRR Additional Benching B-3, 10.0'-11.5', 12.5'-13.4'

Analysis for the portion Finer than the No. 10 Sieve

Analysis Based on -3 inch fraction only


Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

ne No. 10 Sieve				
No. 40	99.8			
No. 200	98.1			
0.02 mm	61.8			
0.005 mm	22.4			
0.002 mm	12.8			
0.001 mm	8.6			

Particle	Size	Distribution

ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTM	0.0	0.0	0.1	0.1	1.7	75.7	22.4
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clay
AASITIO		0.1		0.1	1.7	85.3	12.8
Sieve Size in sieve numbers							
:	3 2 1 3	4 3/8	4 1	0 16 30 4	0 100	200	

Project	HCFF	RR Additional	Benching			Project No.	174316204
Source	B-3, ⁻	10.0'-11.5', 12.	.5'-13.4'	Lab ID	203		
						% + No. 40	0
Tested By		KWS		ASTM D 4318	Method A	Date Received	08-04-2020
Test Date	0	8-14-2020	Prepared	Dry	_		
		et Soil and	Dry Soil and				
	I	are Mass	Tare Mass	Tare Mass	Number of		1 :
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
				Liqui	d Limit		
	20						
	18						
	10						
	16						
		+					
8	, 14						
MOISTLIRE CONTENT	12					──────	
Ц Ц	-						
Č.	5 10				NP		
С Ц С	8						
E	5						
	$\frac{2}{5}$ 6	+					
Σ							
	4						
	2						
	2	+					
	0	1					
		10		20	25	30	40 50

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass (g)	 Tare Mass (g)	Water Content (%)	Plastic Limit	Plasticity Index

Remarks:

HCFRR Additio	nal Benching	Project Number	174316204
		Lab ID	206
SPT Composite		Data Pasaivad	8-4-20
SFT Composite	;		
		·	
ral Majatura C	ntont		
	Smem		IA
	N/A		.,.
			14
			13
rticle Size Anal	ysis	Plasticity Index:	1
			0.1
Method: ASTM	D 422		
		Moisture-Density Relation	nship
icle Size	%	Test Not Performed	
e (mm)	Passing	Maximum Dry Density (lb/ft ³):	N/A
N/A			N/A
N/A			
			N/A
	100.0		11/7
		California Bearing Bat	io
			.10
			N/A
			11/7
		Specific Gravity	
0.001	6.2	Estimated	
aterial, not includ	aed: U (%)		
		Specific Gravity at 20° Celsius:	2.70
()	· · · /	Clossification	
			SM
			Silty Sallu
		AASHTO Classification	Δ_4(0)
10.0	5.1		7-4(0)
		Reviewed By	
	B-3, 13.4'-14.0', SPT Composite ral Moisture Co formed re Content (%): rticle Size Anal Method: ASTM D Method: ASTM D	N/A rticle Size Analysis Method: ASTM D 421 ethod: ASTM D 422 Method: ASTM D 422 Method: ASTM D 422 icle Size $\%$ a (mm) Passing N/A N/A N/A N/A N/A 0.00 19 96.8 9.5 94.0 4.75 90.9 2 86.4 0.425 74.5 0.075 46.0 0.02 28.6 0.005 16.6 0.002 9.7 0.001 6.2 Material, not included: 0 (%) ASTM AASHTO (%) (%) 9.1 13.6 nd 4.5 11.9 1 28.5 28.5 29.4 36.3	B-3, 13.4'-14.0', 15.0'-16.5' Lab ID SPT Composite Date Received Date Reported Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Results Test Method: ASTM D 4318 Method: Prepared: Dry Liquid Limit: Plastic

Stantec

Project Name

Source

Project Number	174316204	
I ah ID	206	

Lab ID 206

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

HCFRR Additional Benching

B-3, 13.4'-14.0', 15.0'-16.5'

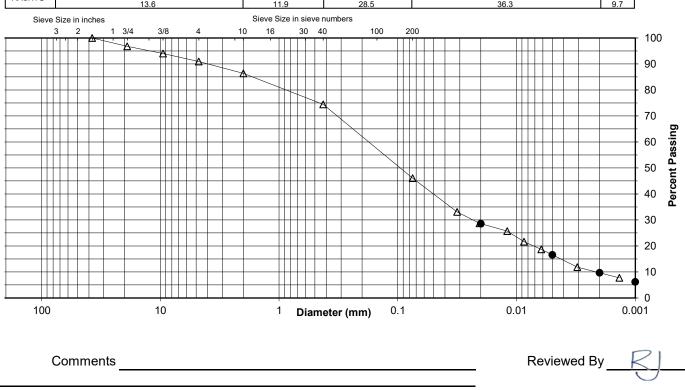
Particle Shape Rounded and Angular Particle Hardness: Hard and Durable

Tested By MW Test Date 08-10-2020 Date Received 08-04-2020

Maximum Particle size: 1 1/2" Sieve

Sieve	%
Size	Passing
1 1/2"	100.0
3/4"	96.8
3/8"	94.0
No. 4	90.9
No. 10	86.4

Analysis for the portion Finer than the No. 10 Si


Analysis Based on -3 inch fraction only

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

he No. 10 Sieve						
No. 40	74.5					
No. 200	46.0					
0.02 mm	28.6					
0.005 mm	16.6					
0.002 mm	9.7					
0.001 mm	6.2					

Particle Size Distribution								
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay	/
ASTM	3.2	5.9	4.5	11.9	28.5	29.4	16.6	;
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt		Clay
AASHIO		12.6		11.0	20 F	26.2		0.7

		RR Additional E		Project No.	174316204		
Source I	3-3, 1	3.4'-14.0', 15.0	0'-16.5'			Lab ID	206
Tested Dy		KWS	Toot Mathad		Acthod A	% + No. 40	26 08-04-2020
Tested By Test Date	0	3-14-2020		ASTM D 4318 N Dry	lethod A	Date Received	00-04-2020
Test Date _	00	5-14-2020	Fiepareu	Diy	-		
Г	W	et Soil and	Dry Soil and		1		
		are Mass	, Tare Mass	Tare Mass	Number of	Water Content	
		(g)	(g)	(g)	Blows	(%)	Liquid Limit
		19.88	18.82	11.25	29	14.0	
-		19.74	18.65	11.00	25	14.2	
		18.22	17.28	11.06	19	15.1	14
F							
L							
	20			Liquid	Limit		
	18						
	10						
	16						
	14			•			
%	14						
LN	12						
MOISTURE CONTENT, %	10						
Ö							
ŪRI	8						
DIST	6						
WO	Ū						
	4						
	2						
	2						
	0						
	1	0		20	25	30	40 50
				NUMBER (OF BLOWS		

PLASTIC LIMIT AND PLASTICITY INDEX

Wet Soil and Tare Mass	Dry Soil and Tare Mass	Tare Mass	Water Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
18.28	17.43	11.05	13.3	13	1
18.60	17.69	11.02	13.6		

Remarks:

roject Name	HCFRR Additio	nal Benching	Project Number	174316204
ource	B-4, 1.5'-3.0', 3	.5'-5.0', 5.0'-6.0'	Lab ID	211
	<u></u>			
ample Type	SPT Composite)	Date Received Date Reported	
			Date Reported	8-18-20
			Test Results	
Natu	iral Moisture Co	ontent	Atterberg Limits	
Test Not Per			Test Method: ASTM D 4318 Method	A
Moistu	re Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	31
			Plastic Limit:	17
	rticle Size Anal		Plasticity Index:	
	Method: ASTM		Activity Index:	0.6
	lethod: ASTM D			
Hydrometer	Method: ASTM	D 422	Maiatura Danaitu Dalatia	.
Dort	icle Size	%	Moisture-Density Relation	<u>nsnip</u>
Sieve Size		_		N/A
Sieve Size	()	Passing	Maximum Dry Density (lb/ft ³):	
	N/A		Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
1 1/2"	37.5	100.0		
3/4"	19	98.7		-
3/8"	9.5	95.7	California Bearing Rat	<u>:io</u>
No. 4	4.75	93.1	Test Not Performed	
No. 10	2	89.0	Bearing Ratio (%):	
No. 40	0.425	78.6	Compacted Dry Density (lb/ft ³):	
No. 200	0.075	57.5	Compacted Moisture Content (%):	N/A
	0.02	44.2		
	0.005	30.7	On a sifi a Onevity	
octimated	0.002	22.8 17.9	Specific Gravity Estimated	
estimated	0.001	17.9	Estimated	
Plus 3 in ma	aterial, not inclue	1ed· 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		•
Range	(%)	(%)		
Gravel	6.9	11.0	Classification	
Coarse Sar	nd 4.1	10.4	Unified Group Symbol:	CL
Medium Sa	nd 10.4		Group Name: S	andy lean clay
Fine Sand		21.1		
Silt	26.8	34.7		
Clay	30.7	22.8	AASHTO Classification:	A-6 (5)
Comments:				
			Reviewed By	\mathbf{k}
			Reviewed By	_ <u>KJ</u>

Stantec

Project Name

Source

Project Number	174316204
	014

%

Lab ID 211

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method	ASTM D 422
Prepared using	ASTM D 421

HCFRR Additional Benching B-4, 1.5'-3.0', 3.5'-5.0', 5.0'-6.0'

Particle Shape Angular Particle Hardness: Hard and Durable

Tested ByMWTest Date08-10-2020Date Received08-04-2020

Maximum Particle size: 1 1/2" Sieve

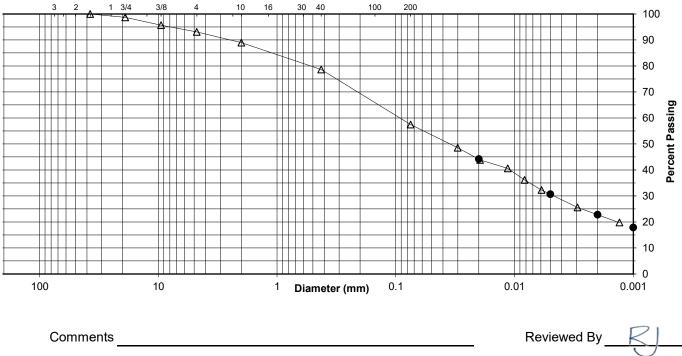
Size	Passing
1 1/2"	100.0
3/4"	98.7
3/8"	95.7
No. 4	93.1
No. 10	89.0
8	-

Sieve

0:---

Analysis for the portion Finer than the No. 10 Siev

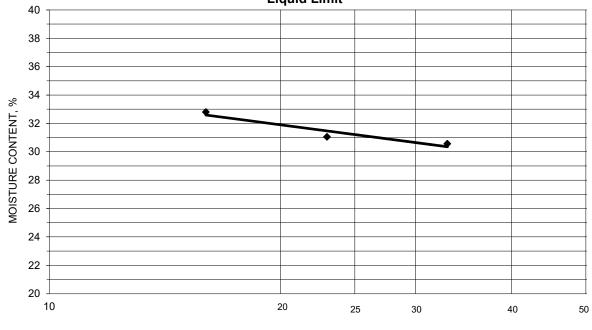
Analysis Based on -3 inch fraction only


Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

he No. 10 Sieve						
No. 40	78.6					
No. 200	57.5					
0.02 mm	44.2					
0.005 mm	30.7					
0.002 mm	22.8					
0.001 mm	17.9					

Particle Size Distribution


ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay
ASTM	1.3	5.6	4.1	10.4	21.1	26.8	30.7
AASHTO		Gravel		Coarse Sand	Fine Sand	Silt	Clay
AASHIO		11.0		10.4	21.1	34.7	22.8
Sieve Size in sieve numbers							

Project	HCFRR Additional E	Benching		Project No.	174316204	
Source	B-4, 1.5'-3.0', 3.5'-5.	0', 5.0'-6.0'		Lab ID	211	
		% + No. 40	21			
Tested By	KWS	Test Method	ASTM D 4318 M	lethod A	Date Received	08-04-2020
Test Date	08-14-2020	Prepared	Dry	_		
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	19.37	17.31	11.03	16	32.8	
	19.89	17.76	10.90	23	31.0	
	17.87	16.36	11.42	33	30.6	31
		1		1	I	

NUMBER OF BLOWS

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.32	16.40	11.03	17.1	17	14
17.19	16.26	10.85	17.2		

Remarks:

Project Name	HCFRR Addition	nal Benching	Project Number	174316204
Source	B-4, 12.5'-14.0',	15.0'-16.5', 17.		218
Comple Trees				0 4 00
Sample Type	SPT Composite		Date Received Date Reported	
			Date Reported	0-10-20
			Test Results	
<u>Natı</u>	ural Moisture Co	ontent	Atterberg Limits	
Test Not Pe			Test Method: ASTM D 4318 Method	AL
Moistu	ure Content (%):	N/A	Prepared: Dry	
			Liquid Limit:	20
De	utiala Cina Anal		Plastic Limit:	16
	method: ASTM		Plasticity Index: Activity Index:	
•	lethod: ASTM D		Activity index.	0.5
	Method: ASTM			
riyaromotor	Mothod: / to fim		Moisture-Density Relation	nship
Part	ticle Size	%	Test Not Performed	<u>-</u>
Sieve Size		Passing	Maximum Dry Density (lb/ft ³):	N/A
	N/A	<u> </u>	Maximum Dry Density (kg/m ³):	N/A
	N/A		Optimum Moisture Content (%):	N/A
	N/A		Over Size Correction %:	N/A
1 1/2"	37.5	100.0		
3/4"	19	94.3		
3/8"	9.5	89.6	California Bearing Rat	tio
No. 4	4.75	87.6	Test Not Performed	
No. 10	2	82.0	Bearing Ratio (%):	N/A
No. 40	0.425	79.8	Compacted Dry Density (lb/ft ³):	N/A
No. 200	0.075	73.4	Compacted Moisture Content (%):	N/A
	0.02	45.1		
	0.005	22.5		
a ativa ata d	0.002	15.0	Specific Gravity	
estimated	0.001	10.4	Estimated	
Plus 3 in m	aterial, not includ	led: 0 (%)	Particle Size:	No. 10
			Specific Gravity at 20° Celsius:	
	ASTM	AASHTO		
Range	(%)	(%)		
Gravel	12.4	18.0	<u>Classification</u>	
Coarse Sa		2.2	Unified Group Symbol:	
Medium Sa			Group Name:Silty	
Fine Sand		6.4		
Silt	50.9	58.4		A 4 (Q)
Clay	22.5	15.0	AASHTO Classification:	A-4 (U)
Comments:				
			Reviewed By	_Ķ.j
				\bigcirc

Stantec

Project Name

Source

Project Number 174316204

Lab ID 218

Sieve analysis for the Portion Coarser than the No. 10 Sieve

Test Method ASTM D 422 Prepared using ASTM D 421

HCFRR Additional Benching

B-4, 12.5'-14.0', 15.0'-16.5', 17.5'-19.0'

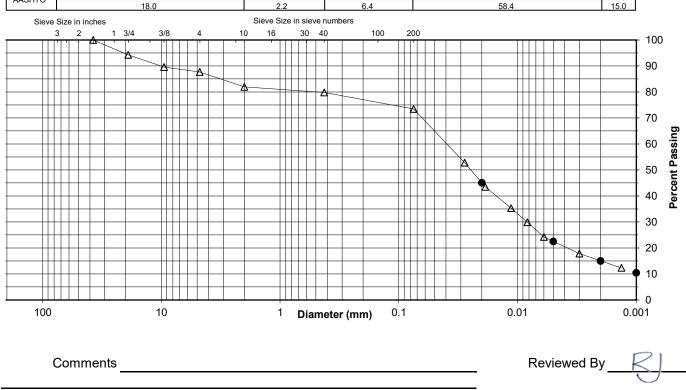
Particle Shape Angular Particle Hardness: Hard and Durable

Tested By DW Test Date 08-10-2020 Date Received 08-04-2020

Maximum Particle size: 1 1/2" Sieve

Sieve	%
Size	Passing
1 1/2"	100.0
3/4"	94.3
3/8"	89.6
No. 4	87.6
No. 10	82.0

Analysis for the portion Finer than the No. 10 Si


Analysis Based on -3 inch fraction only

Specific Gravity 2.7

Dispersed using Apparatus A - Mechanical, for 1 minute

he No. 10 Sieve								
No. 40	79.8							
No. 200	73.4							
0.02 mm	45.1							
0.005 mm	22.5							
0.002 mm	15.0							
0.001 mm	10.4							


Particle Size Distribution											
ASTM	Coarse Gravel	Fine Gravel	C. Sand	Medium Sand	Fine Sand	Silt	Clay				
ASTM	5.7	5.7 6.7 5.6			6.4	50.9	22.5				
AASHTO	Gravel			Coarse Sand	Fine Sand	Silt		Clay			
AASHIU											

Project	HCFRR Additiona	I Benching	Project No.	174316204		
Source	B-4, 12.5'-14.0', 1	5.0'-16.5', 17.5'-19	Lab ID	218		
		% + No. 40	20			
Tested By		Test Method	ASTM D 4318 N	/lethod A	Date Received	08-04-2020
Test Date	08-14-2020	Prepared	Dry	_		
				1	· · · · · ·	
	Wet Soil and	Dry Soil and				
	Tare Mass	Tare Mass	Tare Mass	Number of	Water Content	
	(g)	(g)	(g)	Blows	(%)	Liquid Limit
	19.15	17.75	11.00	15	20.7	
	19.15	17.76	10.84	20	20.1	
	19.30	17.94	10.98	25	19.5	20
	00					
	30					
	28					
	26					
	24					
à	<u>s</u>					
Ę	2 22					

NUMBER OF BLOWS

Wet Soil and	Dry Soil and		Water		
Tare Mass	Tare Mass	Tare Mass	Content		
(g)	(g)	(g)	(%)	Plastic Limit	Plasticity Index
17.71	16.76	11.02	16.6	16	4
18.23	17.30	11.46	15.9		

Remarks:

Project Name HCFRR Additional Benching

Moisture Content of Soil

ASTM D 2216

Project Number 174316204 Tested By MW

						-					· · · · · · · · · · · · · · · · · · ·	
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3"						
Recommended Minimum Mass (g)	20	100	500	2,500	10,000	50,000				Г	Fest Method	ASTM
Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>Hom</u>	ogeneous, <u>C</u>	<u>Dist</u> urbed		-								
					Maximum	Mat	erial	Pass Min.		Wet Soil &	Dry Soil &	
			Date	Material	Particle	Excl	uded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Туре	Size	Amount	Size	(Y/N)	(g)	(g)	(g)	Content (%)
B-1B, 0.0'-1.5'		178	8/7/20	Dist	3/4"			No	31.84	181.65	176.15	3.8
B-1B, 1.5'-3.0'		180	8/7/20	Dist	3/4"			No	31.32	80.64	78.44	4.7
B-1B, 3.0'-4.5'		181	8/7/20	Hom	No. 10			Yes	30.10	54.56	50.76	18.4
B-1B, 5.0'-6.5'		182	8/7/20	Dist	No. 4			No	30.04	75.95	67.36	23.0
B-1B, 7.5'-9.0'		183	8/7/20	Hom	No. 4			No	32.22	125.72	109.34	21.2
B-1B, 10.0'-11.5'		185	8/7/20	Dist	3/4"			No	30.55	122.53	105.05	23.5
B-1B, 12.5'-14.0'		186	8/7/20	Dist	No. 4			No	29.98	69.77	63.73	17.9
B-1B, 15.0'-15.8'		187A	8/7/20	Dist	No. 4			Yes	31.96	175.54	150.09	21.5
B-1B, 15.8'-16.5'		187B	8/7/20	Dist	3/4"			No	30.24	154.34	144.51	8.6
B-1B, 17.5'-17.9'		188A	8/7/20	Dist	No. 4			Yes	30.39	166.79	150.00	14.0
B-1B, 17.9'-19.0'		188B	8/7/20	Dist	3/4"			No	31.13	172.76	163.96	6.6
B-2, 0.0'-1.5'		189	8/7/20	Dist	3/8"			No	31.96	148.61	141.21	6.8
B-2, 1.5'-3.0'		190	8/7/20	Dist	3/8"			No	31.05	94.67	92.46	3.6
B-2, 3.5'-5.0'		191	8/7/20	Dist	3/4"			No	29.83	139.07	132.25	6.7
B-2, 5.0'-6.5'		192	8/7/20	Dist	3/4"			No	30.25	67.92	63.38	13.7
B-2, 7.5'-9.0'		194	8/7/20	Dist	3/4"			No	31.64	75.17	70.30	12.6
B-2, 10.0'-11.5'		195	8/7/20	Dist	No. 4			No	31.48	67.24	62.00	17.2
B-2, 12.5'-14.0'		196	8/7/20	Dist	3/8"			No	30.10	77.14	70.57	16.2
B-3, 0.0'-1.5'		197	8/7/20	Dist	3/4"			No	29.58	140.63	134.84	5.5
B-3, 1.5'-3.0'		198	8/7/20	Dist	3/8"			No	30.16	149.95	138.21	10.9
B-3, 3.0'-4.5'		199	8/7/20	Dist	No. 4			Yes	29.97	165.88	148.77	14.4
B-3, 5.0'-6.5'		201	8/7/20	Hom	No. 4			No	32.05	89.17	81.41	15.7
B-3, 8.0'-9.0'		202	8/7/20	Dist	No. 4			No	31.45	94.27	83.28	21.2
B-3, 10.0'-11.5'		204	8/7/20	Hom	No. 10			Yes	30.20	85.32	75.28	22.3
B-3, 12.5'-13.4'		205	8/7/20	Hom	No. 10			Yes	30.10	68.22	61.68	20.7
B-3, 13.4'-14.0'		207	8/7/20	Dist	3/4"			No	29.84	93.28	86.57	11.8
B-3, 15.0'-16.5'		208	8/7/20	Dist	3/4"			No	29.91	75.92	72.28	8.6
B-3, 17.5'-19.0'		209	8/7/20	Dist	3/4"			No	31.53	158.41	148.14	8.8
				F								

Project Name HCFRR Additional Benching

Moisture Content of Soil

ASTM D 2216

Project Number 174316204 Tested By MW

											· · · · · · - ·	
Maximum Particle Size in Sample	No. 10	No. 4	3/8"	3/4"	1 1/2"	3"						
Recommended Minimum Mass (g)	20	100	500	2,500	10,000	50,000				-	Test Method	ASTM
Material Type: <u>Str</u> atified, <u>Lam</u> inated, <u>Len</u> sed, <u>H</u>	<u>om</u> ogeneous, <u>[</u>	<u>Dist</u> urbed										
					Maximum	Mate	erial	Pass Min.		Wet Soil &	Dry Soil &	
			Date	Material	Particle	Exclu	uded	Mass?	Can Weight	Can Weight	CanWeight	Moisture
Source		Lab ID	Tested	Туре	Size	Amount	Size	(Y/N)	(g)	(g)	(g)	Content (%)
B-4, 0.0'-0.6'		210A	8/7/20	Dist	3/8"			No	29.97	122.49	115.16	8.6
B-4, 0.6'-1.5'		210B	8/7/20	Dist	No. 4			No	29.93	59.48	56.72	10.3
B-4, 1.5'-3.0'		212	8/7/20	Dist	3/4"			No	31.48	66.49	61.55	16.4
B-4, 3.5'-5.0'		213	8/7/20	Dist	3/8"			No	32.08	63.11	59.00	15.3
B-4, 5.0'-6.0'		214	8/7/20	Dist	3/8"			No	30.51	94.73	85.88	16.0
B-4, 6.0'-6.5'		215	8/7/20	Dist	No. 4			No	30.85	130.95	114.16	20.2
B-4, 7.5'-9.0'		216	8/7/20	Dist	No. 10			Yes	31.79	139.20	123.98	16.5
B-4, 10.0'-11.5'		217	8/7/20	Dist	3/4"			No	30.97	204.55	184.04	13.4
B-4, 12.5'-14.0'		219	8/7/20	Hom	No. 10			Yes	31.52	96.24	81.03	30.7
B-4, 15.0'-16.3'		220A	8/7/20	Dist	No. 10			Yes	30.58	71.34	65.00	18.4
B-4, 16.3'-16.5'		220B	8/7/20	Dist	3/4"			No	30.00	45.41	44.19	8.6
B-4, 17.5'-19.0'		221	8/7/20	Dist	3/4"			No	30.99	135.17	126.89	8.6

Comments